Broadband performance of a patterned piezoelectric energy harvester integrated with a continuous elastoacoustic mirror

被引:0
|
作者
Carrara, Matteo [1 ]
Kulpe, Jason A. [2 ]
Leadenham, Stephen M. [2 ]
Leamy, Michael J. [2 ]
Erturk, Alper [2 ]
机构
[1] Georgia Inst Technol, D Guggenheim Sch Aerosp Engn, Atlanta, GA 30332 USA
[2] Georgia Inst Technol, GW Woodruff Sch Mech Engn, Atlanta, GA 30332 USA
来源
ACTIVE AND PASSIVE SMART STRUCTURES AND INTEGRATED SYSTEMS 2015 | 2015年 / 9431卷
关键词
Energy harvesting; wave propagation; piezoelectricity; optimization; scattering; broadband; CLAMPED CIRCULAR PLATE; GENERATOR;
D O I
10.1117/12.2084319
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this work we explore efficient transformation of broadband wave energy into low-power electricity using patterned polymer piezoelectrics integrated with an Elliptical Acoustic Mirror (EAM) configuration. The mirror under consideration features a semi-elliptical continuous mirror with a rectangular arrangement of harvesting material overlapping the geometrical focus of the mirror. Spatial and temporal transformation of the wave propagation field into the frequency-wavenumber domain is performed in order to identify the wavenumber content inside the mirror region. A frequency-domain Root-Mean-Square (RMS) evaluation is then applied in order to guarantee broadband harvesting characteristics to the resulting Distributed Harvester (DH). Computational modeling and experimental testing are employed to quantify performance enhancement of the presented approach in the 20-120 kHz range, where broadband focusing characteristics of the continuous EAM are confirmed experimentally. Additionally the patterned configuration with proper wiring results in substantial power enhancement over 20-60 kHz, i.e. the neighborhood of the center frequency used in its Fourier transform-based design.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Performance of an omnidirectional piezoelectric wind energy harvester
    Shi, Tianyi
    Hu, Gang
    Zou, Lianghao
    Song, Jie
    Kwok, Kenny C. S.
    WIND ENERGY, 2021, 24 (11) : 1167 - 1179
  • [22] Enhanced piezoelectric energy harvester performance using magnetic force and thermal energy
    Alomari, Almuatasim
    Batra, Ashok
    Tan, Arjun
    Schamschula, Marius
    INTEGRATED FERROELECTRICS, 2016, 176 (01) : 291 - 302
  • [23] Enhancement of the performance of a hybrid nonlinear vibration energy harvester based on piezoelectric and electromagnetic transductions
    Mahmoudi, S.
    Kacem, N.
    Bouhaddi, N.
    SMART MATERIALS AND STRUCTURES, 2014, 23 (07)
  • [24] Design, modeling and experiments of broadband tristable galloping piezoelectric energy harvester
    Junlei Wang
    Linfeng Geng
    Shengxi Zhou
    Zhien Zhang
    Zhihui Lai
    Daniil Yurchenko
    Acta Mechanica Sinica, 2020, 36 : 592 - 605
  • [25] Design, modeling and experiments of broadband tristable galloping piezoelectric energy harvester
    Wang, Junlei
    Geng, Linfeng
    Zhou, Shengxi
    Zhang, Zhien
    Lai, Zhihui
    Yurchenko, Daniil
    ACTA MECHANICA SINICA, 2020, 36 (03) : 592 - 605
  • [26] A piezoelectric energy harvester for broadband rotational excitation using buckled beam
    Xie, Zhengqiu
    Kwuimy, C. A. Kitio
    Wang, Zhiguo
    Huang, Wenbin
    AIP ADVANCES, 2018, 8 (01):
  • [27] Broadband Piezoelectric Energy Harvester Based on Coupling Resonance Frequency Tuning
    Hu, Kun
    Wang, Min
    MICROMACHINES, 2023, 14 (01)
  • [28] Design and Simulation of Broadband Piezoelectric Energy Harvester with Multi-Cantilever
    Mo, Weiqiang
    Huang, Shiqing
    Liu, Na
    PROCEEDINGS OF INCOME-VI AND TEPEN 2021: PERFORMANCE ENGINEERING AND MAINTENANCE ENGINEERING, 2023, 117 : 841 - 851
  • [29] Broadband power generation of piezoelectric vibration energy harvester with magnetic coupling
    Jiang, Junxiang
    Liu, Shaogang
    Zhao, Dan
    Feng, Lifeng
    JOURNAL OF INTELLIGENT MATERIAL SYSTEMS AND STRUCTURES, 2019, 30 (15) : 2272 - 2282
  • [30] Nonlinear M-shaped broadband piezoelectric energy harvester for very low base accelerations: primary and secondary resonances
    Leadenham, S.
    Erturk, A.
    SMART MATERIALS AND STRUCTURES, 2015, 24 (05)