Introduction to random walks on homogeneous spaces

被引:14
作者
Benoist, Yves [1 ]
Quint, Jean-Francois [2 ]
机构
[1] Univ Paris 11, Dept Math, Ctr Natl Rech Sci, F-91405 Orsay, France
[2] Univ Paris 13, LAGA, Ctr Natl Rech Sci, F-93430 Villetaneuse, France
来源
JAPANESE JOURNAL OF MATHEMATICS | 2012年 / 7卷 / 02期
关键词
Lie groups; discrete subgroups; homogeneous dynamics; random walk; INVARIANT-MEASURES; UNIPOTENT FLOWS; TORAL AUTOMORPHISMS; HECKE POINTS; EQUIDISTRIBUTION; CONVERGENCE; CONJECTURE; PRODUCTS; THEOREMS; ORBITS;
D O I
10.1007/s11537-012-1220-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let a (0) and a (1) be two matrices in SL(2, ) which span a non-solvable group. Let x (0) be an irrational point on the torus . We toss a (0) or a (1), apply it to x (0), get another irrational point x (1), do it again to x (1), get a point x (2), and again. This random trajectory is equidistributed on the torus. This phenomenon is quite general on any finite volume homogeneous space.
引用
收藏
页码:135 / 166
页数:32
相关论文
共 32 条
[1]   ERGODIC AUTOMORPHISMS [J].
AUSLANDE.L .
AMERICAN MATHEMATICAL MONTHLY, 1970, 77 (01) :1-&
[2]  
Benoist Y., 2011, PREPRINT
[3]   Random walks on finite volume homogeneous spaces [J].
Benoist, Yves ;
Quint, Jean-Francois .
INVENTIONES MATHEMATICAE, 2012, 187 (01) :37-59
[4]   Stationary measures and closed invariant of homogenous spaces [J].
Benoist, Yves ;
Quint, Jean-Francois .
ANNALS OF MATHEMATICS, 2011, 174 (02) :1111-1162
[5]   Stationary measures and invariant subsets of homogeneous spaces [J].
Benoist, Yves ;
Quint, Jean-Frangois .
COMPTES RENDUS MATHEMATIQUE, 2009, 347 (1-2) :9-13
[6]  
Bougerol P., 1985, Products of Random Matrices with Applications to Schrodinger Operators, V8
[7]   Invariant measures and stiffness for non-Abelian groups of toral automorphisms [J].
Bourgain, Jean ;
Furman, Alex ;
Lindenstrauss, Elon ;
Mozes, Shahar .
COMPTES RENDUS MATHEMATIQUE, 2007, 344 (12) :737-742
[8]   THE STRONG LAW OF LARGE NUMBERS FOR A CLASS OF MARKOV-CHAINS [J].
BREIMAN, L .
ANNALS OF MATHEMATICAL STATISTICS, 1960, 31 (03) :801-803
[9]   Convergence of spherical averages for actions of free groups [J].
Bufetov, AI .
ANNALS OF MATHEMATICS, 2002, 155 (03) :929-944
[10]   Hecke operators and equidistribution of Hecke points [J].
Clozel, L ;
Oh, H ;
Ullmo, E .
INVENTIONES MATHEMATICAE, 2001, 144 (02) :327-351