ON THE IRREDUCIBLE COMPONENTS OF A SEMIALGEBRAIC SET

被引:14
作者
Fernando, Jose F. [1 ]
Gamboa, J. M. [1 ]
机构
[1] Univ Complutense Madrid, Dept Algebra, Fac Ciencias Matemat, E-28040 Madrid, Spain
关键词
Nash function; Nash set; irreducible semialgebraic set; irreducible components of a semialgebraic set; w-Nash set; q-Nash set; substitution theorem; positivstellensatze; 17th Hilbert problem and real Nullstellensatz; NASH FUNCTIONS; SEPARATION;
D O I
10.1142/S0129167X12500310
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this work we define a semialgebraic set S C R-n to be irreducible if the noetherian ring N(S) of Nash functions on S is an integral domain. Keeping this notion we develop a satisfactory theory of irreducible components of semialgebraic sets, and we use it fruitfully to approach four classical problems in Real Geometry for the ring N(S): Substitution Theorem, Positivstellensatze, 17th Hilbert Problem and real Nullstellensatz, whose solution was known just in case S = M is an affine Nash manifold. In fact, we give full characterizations of the families of semialgebraic sets for which these classical results are true.
引用
收藏
页数:40
相关论文
共 24 条
[11]   SUBSTITUTION IN NASH FUNCTIONS [J].
EFROYMSON, G .
PACIFIC JOURNAL OF MATHEMATICS, 1976, 63 (01) :137-145
[12]  
Fernando J.F., 2012, COLLECT MAT IN PRESS
[13]   COMPLEXITY OF FINDING IRREDUCIBLE COMPONENTS OF A SEMIALGEBRAIC SET [J].
GALLIGO, A ;
VOROBJOV, N .
JOURNAL OF COMPLEXITY, 1995, 11 (01) :174-193
[14]  
KNEBUSCH M, 1992, LECT NOTES MATH, V1524, P1
[15]  
Marinari M. G., 1983, LECT NOTES PURE APPL, V84, P183
[16]  
Oka Kiyoshi., 1951, J MATH SOC JAPAN, V3, P204, DOI 10.2969/jmsj/00310204
[17]  
RAIMONDO M., 1985, REND SEM MAT U PADOV, V73, P137
[18]   A NOTE ON A SEPARATION PROBLEM [J].
RUIZ, JM .
ARCHIV DER MATHEMATIK, 1984, 43 (05) :422-426
[19]  
Shafarevich I. R., 1977, SPRINGER STUDY EDITI, V213
[20]  
Shiota M., 1987, LECT NOTES MATH, V1269