Facile synthesis of graphene-silicon nanocomposites with an advanced binder for high-performance lithium-ion battery anodes

被引:92
作者
Chen, Da [1 ]
Yi, Ran [1 ]
Chen, Shuru [1 ]
Xu, Terrence [1 ]
Gordin, Mikhail L. [1 ]
Wang, Donghai [1 ]
机构
[1] Penn State Univ, Dept Mech & Nucl Engn, University Pk, PA 16802 USA
关键词
Silicon/graphene nanocomposites; Binder; Cycling performance; Lithium ion batteries; SI-C COMPOSITE; NANOSCALE BUILDING-BLOCKS; NEGATIVE ELECTRODES; HIGH-CAPACITY; ELECTROCHEMICAL PERFORMANCE; STORAGE PROPERTIES; CYCLE LIFE; NANOWIRES; SHEETS; FILMS;
D O I
10.1016/j.ssi.2013.11.020
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this work, the nanocomposite of silicon nanoparticles dispersed on conducting graphene (Si/graphene) was successfully synthesized using high-energy ball milling followed by thermal treatment, and Xanthan gum was developed for the first time as a novel advanced binder for Si-based lithium-ion battery anodes. Compared to the pristine Si anode, the Si/graphene composite anode showed an enhanced reversible capacity, excellent cyclic performance and rate capability, highlighting the advantages of dispersing Si nanoparticles on graphene sheets. The significant enhancement on electrochemical performance could be ascribed to the fact that the Si/graphene composite anode could maintain excellent electronic contact and accommodate the large volume change of Si during the lithiation/delithiation process. In addition, the Si/graphene anode with the gum binder exhibited improved cycling and rate performances compared to that with the conventional carboxymethyl cellulose (CMC) binder. Such an enhancement was ascribed to the high binder stiffness and the strong adhesion of the binder to Si-based particles due to the binder's specific chemical structure and properties, which helps maintain the integrity of the electrode and accommodate the volume change of Si. This work demonstrates that the Si/graphene nanocomposite with an advanced binder offers great advantages to enhance the lithium storage capacity, cyclic stability, and rate capability, making it a promising candidate as an anode material for high-performance lithium ion batteries (LIBs). (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:65 / 71
页数:7
相关论文
共 59 条
[1]   Nanostructured materials for advanced energy conversion and storage devices [J].
Aricò, AS ;
Bruce, P ;
Scrosati, B ;
Tarascon, JM ;
Van Schalkwijk, W .
NATURE MATERIALS, 2005, 4 (05) :366-377
[2]   Building better batteries [J].
Armand, M. ;
Tarascon, J. -M. .
NATURE, 2008, 451 (7179) :652-657
[3]   Si electrodes for li-ion batteries - A new way to look at an old problem [J].
Beattie, S. D. ;
Larcher, D. ;
Morcrette, M. ;
Simon, B. ;
Tarascon, J. -M. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2008, 155 (02) :A158-A163
[4]   Reaction of Li with alloy thin films studied by in situ AFM [J].
Beaulieu, LY ;
Hatchard, TD ;
Bonakdarpour, A ;
Fleischauer, MD ;
Dahn, JR .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2003, 150 (11) :A1457-A1464
[5]   Nanosilicon-Based Thick Negative Composite Electrodes for Lithium Batteries with Graphene as Conductive Additive [J].
Binh Phuong Nhan Nguyen ;
Kumar, Nanjundan Ashok ;
Gaubicher, Joel ;
Duclairoir, Florence ;
Brousse, Thierry ;
Crosnier, Olivier ;
Dubois, Lionel ;
Bidan, Gerard ;
Guyomard, Dominique ;
Lestriez, Bernard .
ADVANCED ENERGY MATERIALS, 2013, 3 (10) :1351-1357
[6]   Key Parameters Governing the Reversibility of Si/Carbon/CMC Electrodes for Li-Ion Batteries [J].
Bridel, J. -S. ;
Azais, T. ;
Morcrette, M. ;
Tarascon, J. -M. ;
Larcher, D. .
CHEMISTRY OF MATERIALS, 2010, 22 (03) :1229-1241
[7]   Study of styrene butadiene rubber and sodium methyl cellulose as binder for negative electrodes in lithium-ion batteries [J].
Buqa, H. ;
Holzapfel, M. ;
Krumeich, F. ;
Veit, C. ;
Novak, P. .
JOURNAL OF POWER SOURCES, 2006, 161 (01) :617-622
[8]   Chemical reduction of SiCl4 for the preparation of silicon-graphite composites used as negative electrodes in lithium-ion batteries [J].
Cahen, S. ;
Janot, R. ;
Laffont-Dantras, L. ;
Tarascon, J. M. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2008, 155 (07) :A512-A519
[9]   High-performance lithium battery anodes using silicon nanowires [J].
Chan, Candace K. ;
Peng, Hailin ;
Liu, Gao ;
McIlwrath, Kevin ;
Zhang, Xiao Feng ;
Huggins, Robert A. ;
Cui, Yi .
NATURE NANOTECHNOLOGY, 2008, 3 (01) :31-35
[10]   Structural and electrochemical study of the reaction of lithium with silicon nanowires [J].
Chan, Candace K. ;
Ruffo, Riccardo ;
Hong, Seung Sae ;
Huggins, Robert A. ;
Cui, Yi .
JOURNAL OF POWER SOURCES, 2009, 189 (01) :34-39