NONTRIVIAL SOLUTIONS FOR A MIXED BOUNDARY PROBLEM FOR SCHRODINGER EQUATIONS WITH AN EXTERNAL MAGNETIC FIELD

被引:4
作者
Alves, Claudianor O. [1 ]
Nemer, Rodrigo C. M. [1 ]
Soares, Sergio H. M. [2 ]
机构
[1] Univ Fed Campina Grande, Unidade Acad Matemat & Estat, BR-58109970 Campina Grande, PB, Brazil
[2] Univ Sao Paulo, Dept Matemat, Inst Ciencias Matemat & Computacao, BR-13560970 Sao Carlos, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
Nonlinear Schrodinger equation; variational methods; Lusternik-Schnirelman category; Morse theory; MULTIPLE POSITIVE SOLUTIONS; NLS EQUATIONS; ELECTROMAGNETIC-FIELDS; ELLIPTIC PROBLEMS; STATES; EXISTENCE; NUMBER;
D O I
10.12775/TMNA.2015.050
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the existence of solutions for a class of nonlinear Schrodinger equations involving a magnetic field with mixed Dirichlet-Neumann boundary conditions. We use Lusternik-Shnirelman category and the Morse theory to estimate the number of nontrivial solutions in terms of the topology of the part of the boundary where the Neumann condition is prescribed.
引用
收藏
页码:329 / 362
页数:34
相关论文
共 36 条
[1]   Solutions to nonlinear Schrodinger equations with singular electromagnetic potential and critical exponent [J].
Abatangelo, Laura ;
Terracini, Susanna .
JOURNAL OF FIXED POINT THEORY AND APPLICATIONS, 2011, 10 (01) :147-180
[2]   On the number of solutions of NLS equations with magnetics fields in expanding domains [J].
Alves, Claudianor O. ;
Figueiredo, Giovany M. ;
Furtado, Marcelo F. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2011, 251 (09) :2534-2548
[3]   Radial solutions concentrating on spheres of nonlinear Schrodinger equations with vanishing potentials [J].
Ambrosetti, A. ;
Ruiz, D. .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2006, 136 :889-907
[4]   Semiclassical states of nonlinear Schrodinger equations [J].
Ambrosetti, A ;
Badiale, M ;
Cingolani, S .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1997, 140 (03) :285-300
[6]   THE EFFECT OF THE DOMAIN TOPOLOGY ON THE NUMBER OF POSITIVE SOLUTIONS OF NONLINEAR ELLIPTIC PROBLEMS [J].
BENCI, V ;
CERAMI, G .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1991, 114 (01) :79-93
[7]   MULTIPLE POSITIVE SOLUTIONS OF SOME ELLIPTIC PROBLEMS VIA THE MORSE-THEORY AND THE DOMAIN TOPOLOGY [J].
BENCI, V ;
CERAMI, G .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 1994, 2 (01) :29-48
[8]  
Benci V., 1995, Progr. Nonlinear Differential Equations Appl., V15, P37
[9]  
BERESTYCKI H, 1983, ARCH RATION MECH AN, V82, P313
[10]  
Brezis H., 1983, Analyse fonctionnelle, Theorie et applications