CHAOS IN THE WEIGHTED BIEBUTOV SYSTEMS

被引:1
作者
Wu, Xinxing [1 ,2 ]
Zhu, Peiyong [1 ]
机构
[1] Univ Elect Sci & Technol China, Sch Math, Chengdu 611731, Sichuan, Peoples R China
[2] City Univ Hong Kong, Dept Elect Engn, Hong Kong, Hong Kong, Peoples R China
来源
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS | 2013年 / 23卷 / 08期
关键词
Weighted Biebutov system; continuous distributional chaos; Devaney chaos; Li-Yorke sensitivity; dense chaos; DISTRIBUTIONAL CHAOS; DYNAMICAL-SYSTEMS; SEMIGROUPS;
D O I
10.1142/S0218127413501332
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, various notions of chaos in the Biebutov system are studied. First, the Biebutov system is generalized to the weighted Biebutov system. Meanwhile, we introduce the concept of continuous distributional chaos for the weighted Biebutov system and prove that it exhibits continuous distributional chaos and Li-Yorke sensitivity. Finally, we prove that the weighted Biebutov system is mixing and Devaney chaotic.
引用
收藏
页数:9
相关论文
共 30 条
[1]   Li-Yorke sensitivity [J].
Akin, E ;
Kolyada, S .
NONLINEARITY, 2003, 16 (04) :1421-1433
[2]   DISTRIBUTIONAL CHAOS FOR STRONGLY CONTINUOUS SEMIGROUPS OF OPERATORS [J].
Albanese, Angela A. ;
Barrachina, Xavier ;
Mangino, Elisabetta M. ;
Peris, Alfredo .
COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2013, 12 (05) :2069-2082
[3]  
[Anonymous], DYNAMICS LINEAR OPER
[4]   DYNAMICS OF BIRTH-AND-DEATH PROCESSES WITH PROLIFERATION - STABILITY AND CHAOS [J].
Banasiak, Jacek ;
Moszynski, Marcin .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2011, 29 (01) :67-79
[5]   ON DEVANEY DEFINITION OF CHAOS [J].
BANKS, J ;
BROOKS, J ;
CAIRNS, G ;
DAVIS, G ;
STACEY, P .
AMERICAN MATHEMATICAL MONTHLY, 1992, 99 (04) :332-334
[6]   Distributionally chaotic translation semigroups [J].
Barrachina, Xavier ;
Peris, Alfred .
JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2012, 18 (04) :751-761
[7]   Dynamics of holomorphic groups [J].
Bayart, Frederic .
SEMIGROUP FORUM, 2011, 82 (02) :229-241
[8]   Hypercyclic, topologically mixing and chaotic semigroups on Banach spaces [J].
Bermúdez, T ;
Bonilla, A ;
Conejero, JA ;
Peris, A .
STUDIA MATHEMATICA, 2005, 170 (01) :57-75
[9]   Li-Yorke and distributionally chaotic operators [J].
Bermudez, T. ;
Bonilla, A. ;
Martinez-Gimenez, F. ;
Peris, A. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2011, 373 (01) :83-93
[10]   Hypercyclic Semigroups Generated by Ornstein-Uhlenbeck Operators [J].
Conejero, Jose A. ;
Mangino, Elisabetta M. .
MEDITERRANEAN JOURNAL OF MATHEMATICS, 2010, 7 (01) :101-109