A Semi-supervised Graph Attentive Network for Financial Fraud Detection

被引:245
作者
Wang, Daixin [1 ,2 ]
Lin, Jianbin [1 ]
Cui, Peng [2 ]
Jia, Quanhui [1 ]
Wang, Zhen [1 ]
Fang, Yanming [1 ]
Yu, Quan [1 ]
Zhou, Jun [1 ]
Yang, Shuang [1 ]
Qi, Yuan [1 ]
机构
[1] Ant Financial Serv Grp, Hangzhou, Peoples R China
[2] Tsinghua Univ, Dept Comp Sci & Technol, Beijing, Peoples R China
来源
2019 19TH IEEE INTERNATIONAL CONFERENCE ON DATA MINING (ICDM 2019) | 2019年
基金
中国博士后科学基金;
关键词
Graph Embedding; Fraud Prediction; Graph Neural Network;
D O I
10.1109/ICDM.2019.00070
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
With the rapid growth of financial services, fraud detection has been a very important problem to guarantee a healthy environment for both users and providers. Conventional solutions for fraud detection mainly use some rule-based methods or distract some features manually to perform prediction. However, in financial services, users have rich interactions and they themselves always show multifaceted information. These data form a large multiview network, which is not fully exploited by conventional methods. Additionally, among the network, only very few of the users are labelled, which also poses a great challenge for only utilizing labeled data to achieve a satisfied performance on fraud detection. To address the problem, we expand the labeled data through their social relations to get the unlabeled data and propose a semi-supervised attentive graph neural network, named SemiGNN to utilize the multi-view labeled and unlabeled data for fraud detection. Moreover, we propose a hierarchical attention mechanism to better correlate different neighbors and different views. Simultaneously, the attention mechanism can make the model interpretable and tell what are the important factors for the fraud and why the users are predicted as fraud. Experimentally, we conduct the prediction task on the users of Alipay, one of the largest third-party online and offline cashless payment platform serving more than 4 hundreds of million users in China. By utilizing the social relations and the user attributes, our method can achieve a better accuracy compared with the state-of-the-art methods on two tasks. Moreover, the interpretable results also give interesting intuitions regarding the tasks.
引用
收藏
页码:598 / 607
页数:10
相关论文
共 29 条
[1]  
[Anonymous], 2011, DECIS SUPPORT SYST, DOI DOI 10.1016/j.dss.2010.08.008
[2]  
[Anonymous], 2016, INT C MACH LEARN
[3]  
[Anonymous], 2015, P 24 ACM INT C INF K
[4]  
[Anonymous], 2015, P 24 INT C WORLD WID
[5]  
[Anonymous], 2017, P 23 ACM SIGKDD INT
[6]  
[Anonymous], 2011, P 28 INT C MACHINE L, DOI DOI 10.5555/3104482.3104516
[7]  
[Anonymous], 2016, arXiv
[8]   A Bayesian dichotomous model with asymmetric link for fraud in insurance [J].
Bermudez, Ll. ;
Perez, J. M. ;
Ayuso, M. ;
Gomez, E. ;
Vazquez, F. J. .
INSURANCE MATHEMATICS & ECONOMICS, 2008, 42 (02) :779-786
[9]  
Bose I., 2007, INT JOINT C E COMM E
[10]  
Chang Shiyu, 2015, P 21 ACM SIGKDD INT