Exact Multiplicity of Sign-Changing Solutions for a Class of Second-Order Dirichlet Boundary Value Problem with Weight Function

被引:0
作者
An, Yulian [1 ]
机构
[1] Shanghai Inst Technol, Dept Math, Shanghai 201418, Peoples R China
关键词
POSITIVE SOLUTIONS; SOLUTION CURVES; NODAL SOLUTIONS; TIME MAPS; EXISTENCE; BIFURCATION;
D O I
10.1155/2013/897307
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Using bifurcation techniques and Sturm comparison theorem, we establish exact multiplicity results of sign-changing or constant sign solutions for the boundary value problems u '' + a(t)f(u) = 0, t epsilon (0, 1), u(0) = 0, and u(1) = 0, where f epsilon C(R,R) satisfies f(0) = 0 and the limits f(infinity) = lim(vertical bar s vertical bar ->infinity)(f(s)/s), f(0) = lim(vertical bar s vertical bar -> 0)(f (s)/s) epsilon {0, infinity}. Weight function a(t) epsilon C-1[0, 1] satisfies a(t) > 0 on [0, 1].
引用
收藏
页数:9
相关论文
共 26 条
[1]   Remarks on time map for quasilinear equations [J].
Adamowicz, Tomasz ;
Korman, Philip .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2011, 376 (02) :686-695
[2]   POSITIVE SOLUTIONS OF ASYMPTOTICALLY LINEAR ELLIPTIC EIGENVALUE PROBLEMS [J].
AMBROSETTI, A ;
HESS, P .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1980, 73 (02) :411-422
[3]  
An YL, 2010, ELECTRON J DIFFER EQ
[4]   SIGN CHANGING SOLUTIONS FOR A CLASS OF SUPERLINEAR MULTIPARAMETER SEMI-POSITONE PROBLEMS [J].
ANURADHA, V ;
SHIVAJI, R .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1995, 24 (11) :1581-1596
[5]   Nonresonant singular two-point boundary value problems [J].
Asakawa, H .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2001, 44 (06) :791-809
[6]   Solution curves and exact multiplicity results for 2mth order boundary value problems [J].
Bari, R ;
Rynne, BP .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2004, 292 (01) :17-22
[7]   Nodal solutions of boundary value problems with boundary conditions involving Riemann-Stieltjes integrals [J].
Chamberlain, Jeremy ;
Kong, Lingju ;
Kong, Qingkai .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2011, 74 (06) :2380-2387
[8]  
Crandall M.G., 1971, J. Funct. Anal., V8, P321, DOI DOI 10.1016/0022-1236(71)90015-2
[9]   ON THE EXISTENCE OF POSITIVE SOLUTIONS OF ORDINARY DIFFERENTIAL-EQUATIONS [J].
ERBE, LH ;
WANG, HY .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1994, 120 (03) :743-748
[10]   Multiplicity of positive solutions to boundary blow-up elliptic problems with sign-changing weights [J].
Garcia-Melian, Jorge .
JOURNAL OF FUNCTIONAL ANALYSIS, 2011, 261 (07) :1775-1798