A GLUING THEOREM FOR QUASICONFORMAL MAPPINGS

被引:5
作者
Jiang, Yunping [1 ,2 ]
Qi, Yi [3 ]
机构
[1] CUNY Queens Coll, Dept Math, Flushing, NY 11367 USA
[2] CUNY, Grad Sch, Dept Math, New York, NY 10016 USA
[3] Beihang Univ, Sch Math & Syst Sci, Beijing 100191, Peoples R China
基金
中国国家自然科学基金;
关键词
main inequality; conformal germ; gluing;
D O I
10.2996/kmj/1352985446
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove, by using the main inequality of Reich and Strebel, that any n K-quasiconformal germs defined on n disjoint domains in the Riemann sphere can be glued by one (K + epsilon)-quasiconformal homeomorphism, where epsilon is a positive number which can go to zero as the domains of germs shrinking to n points. This generalizes a result in [8] where only the case K = 1 has been considered.
引用
收藏
页码:415 / 424
页数:10
相关论文
共 14 条
[1]  
ASTALA K., 2001, REPORT U JYVASKYLA, V211, P27
[2]   HOLOMORPHIC FAMILIES OF INJECTIONS [J].
BERS, L ;
ROYDEN, HL .
ACTA MATHEMATICA, 1986, 157 (3-4) :259-286
[3]  
Chirka E.M., 2004, Doklady Akademii Nauk, V397, P37
[4]  
Douady A., 1995, AST RISQUE, V227, P7
[5]   EXTREMAL QUASI-CONFORMAL MAPPINGS [J].
FEHLMANN, R .
COMMENTARII MATHEMATICI HELVETICI, 1981, 56 (04) :558-580
[6]  
GARDINER F., LONDON MATH SOC LECT, V368, P156
[7]  
Gardiner F.P., 2000, Quasiconformal Teichmueller Theory
[8]  
Jiang Y., 2009, MICH MATH J, V58, P517
[9]  
LIU Y., 1992, CHINESE J ENG MATH, V9, P120
[10]  
MANE R, 1983, ANN SCI ECOLE NORM S, V16, P193