An improved learning algorithm for compact RBF networks

被引:0
作者
Lai, XP [1 ]
Li, B [1 ]
机构
[1] Shandong Univ Weihai, Sch Informat Engn, Weihai 264209, Peoples R China
来源
PROCEEDINGS OF THE 2005 INTERNATIONAL CONFERENCE ON NEURAL NETWORKS AND BRAIN, VOLS 1-3 | 2005年
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
An improved learning algorithm for RBF networks is presented in this paper. It allocates new neurons by a four-part novelty criterion, removes redundant neurons according to their error reduction rates, and updates output-layer weights by a recursive least-squares algorithm with Givens QR decomposition. Simulations on two benchmark problems demonstrate that the algorithm produces more compact networks than existing algorithms.
引用
收藏
页码:591 / 594
页数:4
相关论文
共 10 条
[1]  
BLAKE C, 1998, UCI REPOSITORY MACH
[2]   ORTHOGONAL LEAST-SQUARES LEARNING ALGORITHM FOR RADIAL BASIS FUNCTION NETWORKS [J].
CHEN, S ;
COWAN, CFN ;
GRANT, PM .
IEEE TRANSACTIONS ON NEURAL NETWORKS, 1991, 2 (02) :302-309
[3]   An efficient sequential learning algorithm for growing and pruning RBF (GAP-RBF) networks [J].
Huang, GB ;
Saratchandran, P ;
Sundararajan, N .
IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS, 2004, 34 (06) :2284-2292
[4]   A FUNCTION ESTIMATION APPROACH TO SEQUENTIAL LEARNING WITH NEURAL NETWORKS [J].
KADIRKAMANATHAN, V ;
NIRANJAN, M .
NEURAL COMPUTATION, 1993, 5 (06) :954-975
[5]  
Kalouptsidis N., 1993, ADAPTIVE SYSTEM IDEN
[6]   Growing radial basis neural networks: Merging supervised and unsupervised learning with network growth techniques [J].
Karayiannis, NB ;
Mi, GWQ .
IEEE TRANSACTIONS ON NEURAL NETWORKS, 1997, 8 (06) :1492-1506
[7]   Analysis of minimal radial basis function network algorithm for real-time identification of nonlinear dynamic systems [J].
Li, Y ;
Sundararajan, N ;
Saratchandran, P .
IEE PROCEEDINGS-CONTROL THEORY AND APPLICATIONS, 2000, 147 (04) :476-484
[8]  
Lu YW, 1997, NEURAL COMPUT, V9, P461, DOI 10.1162/neco.1997.9.2.461
[9]   A Resource-Allocating Network for Function Interpolation [J].
Platt, John .
NEURAL COMPUTATION, 1991, 3 (02) :213-225
[10]   Prediction of chaotic time-series with a resource-allocating RBF network [J].
Rosipal, R ;
Koska, M ;
Farkas, I .
NEURAL PROCESSING LETTERS, 1998, 7 (03) :185-197