A stochastic model of anomalous heat transport: analytical solution of the steady state

被引:50
作者
Lepri, S. [1 ]
Mejia-Monasterio, C. [1 ]
Politi, A. [1 ]
机构
[1] CNR, Ist Sistemat Complessi, I-50019 Sesto Fiorentino, Italy
关键词
HARMONIC CRYSTAL; FOURIERS LAW; CONDUCTIVITY;
D O I
10.1088/1751-8113/42/2/025001
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider a one-dimensional harmonic crystal with conservative noise, in contact with two stochastic Langevin heat baths at different temperatures. The noise term consists of collisions between neighbouring oscillators that exchange their momenta, with a rate gamma. The stationary equations for the covariance matrix are exactly solved in the thermodynamic limit (N -> infinity). In particular, we derive an analytical expression for the temperature profile, which turns out to be independent of gamma. Moreover, we obtain an exact expression for the leading term of the energy current, which scales as 1/root gamma N. Our theoretical results are finally found to be consistent with the numerical solutions of the covariance matrix for finite N.
引用
收藏
页数:15
相关论文
共 23 条
[1]   Momentum conserving model with anomalous thermal conductivity in low dimensional systems [J].
Basile, Giada ;
Bernardin, Cedric ;
Olla, Stefano .
PHYSICAL REVIEW LETTERS, 2006, 96 (20)
[2]   Fourier's law for a microscopic model of heat conduction [J].
Bernardin, C ;
Olla, S .
JOURNAL OF STATISTICAL PHYSICS, 2005, 121 (3-4) :271-289
[3]   Stochastic interacting particle systems out of equilibrium [J].
Bertini, L. ;
De Sole, A. ;
Gabrielli, D. ;
Jona-Lasinio, G. ;
Landim, C. .
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2007,
[4]   SIMULATION OF NONHARMONIC INTERACTIONS IN A CRYSTAL BY SELF-CONSISTENT RESERVOIRS [J].
BOLSTERLI, M ;
RICH, M ;
VISSCHER, WM .
PHYSICAL REVIEW A-GENERAL PHYSICS, 1970, 1 (04) :1086-+
[5]   Fourier's law for a harmonic crystal with self-consistent stochastic reservoirs [J].
Bonetto, F ;
Lebowitz, JL ;
Lukkarinen, J .
JOURNAL OF STATISTICAL PHYSICS, 2004, 116 (1-4) :783-813
[6]  
Bonetto F., 2000, MATH PHYS 2000
[7]   Fourier's law from closure equations [J].
Bricmont, Jean ;
Kupiainen, Antti .
PHYSICAL REVIEW LETTERS, 2007, 98 (21)
[8]   MODEL OF HEAT-CONDUCTION [J].
DAVIES, EB .
JOURNAL OF STATISTICAL PHYSICS, 1978, 18 (02) :161-170
[9]  
DELFINI L, 2008, STOCHASTIC MODEL ANO
[10]   Nonequilibrium invariant measure under heat flow [J].
Delfini, Luca ;
Lepri, Stefano ;
Livi, Roberto ;
Politi, Antonio .
PHYSICAL REVIEW LETTERS, 2008, 101 (12)