OPTIMAL GRADIENT ESTIMATES VIA RIESZ POTENTIALS FOR p(•)-LAPLACIAN TYPE EQUATIONS

被引:14
作者
Byun, Sun-Sig [1 ,2 ]
Youn, Yeonghun [1 ]
机构
[1] Seoul Natl Univ, Dept Math Sci, Seoul 08826, South Korea
[2] Seoul Natl Univ, Res Inst Math, Seoul 08826, South Korea
关键词
SOBOLEV EMBEDDINGS;
D O I
10.1093/qmath/hax013
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We investigate degenerate elliptic equations with coefficients of p(center dot)-Laplacian type when the right-hand side is a finite Borel measure. An optimal pointwise estimate of the gradient of a very weak solution to such a measure data problem is obtained via a Riesz potential of the measure under a minimal regularity requirement on the associated coefficients and an optimal condition on the variable exponent p(center dot). As a consequence, we are able to derive a C-1 regularity criterion as well as a Calderon-Zygmund-type estimate in the literature.
引用
收藏
页码:1071 / 1115
页数:45
相关论文
共 27 条
[1]  
ADAMS DR, 1975, DUKE MATH J, V42, P765, DOI 10.1215/S0012-7094-75-04265-9
[2]   Riesz and Wolff potentials and elliptic equations in variable exponent weak Lebesgue spaces [J].
Almeida, A. ;
Harjulehto, P. ;
Hasto, P. ;
Lukkari, T. .
ANNALI DI MATEMATICA PURA ED APPLICATA, 2015, 194 (02) :405-424
[3]  
[Anonymous], 2003, DIRECT METHODS CALCU, DOI DOI 10.1142/5002
[4]   ELLIPTIC INTERPOLATION ESTIMATES FOR NON-STANDARD GROWTH OPERATORS [J].
Baroni, Paolo ;
Habermann, Jens .
ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2014, 39 (01) :119-162
[5]   NON-LINEAR ELLIPTIC AND PARABOLIC EQUATIONS INVOLVING MEASURE DATA [J].
BOCCARDO, L ;
GALLOUET, T .
JOURNAL OF FUNCTIONAL ANALYSIS, 1989, 87 (01) :149-169
[6]   GRADIENT ESTIMATES VIA NON STANDARD POTENTIALS AND CONTINUITY [J].
Boegelein, Verena ;
Habermann, Jens .
ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2010, 35 (02) :641-678
[7]  
Byun S., REGULARITY IN PRESS, DOI [10.1016/j.anihpc.2016.12.002, DOI 10.1016/J.ANIHPC.2016.12.002]
[8]   Variable exponent, linear growth functionals in image restoration [J].
Chen, Yunmei ;
Levine, Stacey ;
Rao, Murali .
SIAM JOURNAL ON APPLIED MATHEMATICS, 2006, 66 (04) :1383-1406
[10]   Lebesgue and Sobolev Spaces with Variable Exponents [J].
Diening, Lars ;
Harjulehto, Petteri ;
Hasto, Peter ;
Ruzicka, Michael .
LEBESGUE AND SOBOLEV SPACES WITH VARIABLE EXPONENTS, 2011, 2017 :1-+