Derivations and linear functions along rational functions

被引:8
作者
Gselmann, Eszter [1 ]
机构
[1] Univ Debrecen, Inst Math, H-4010 Debrecen, Hungary
来源
MONATSHEFTE FUR MATHEMATIK | 2013年 / 169卷 / 3-4期
基金
匈牙利科学研究基金会;
关键词
Derivation; Linear function; Polynomial function;
D O I
10.1007/s00605-012-0375-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The main purpose of this paper is to give characterization theorems on derivations as well as on linear functions. Among others the following problem will be investigated: Let be additive functions, be arbitrarily fixed, and let us assume that the mapping phi(x)=g(ax(n)+b/cx(n)+d) - x(n-1)f(x)/(cxn+d)2 (x epsilon R, cx(n) + d)(2) (x is an element of R, cx(n) + d not equal 0) satisfies some regularity on its domain (e.g. (locally) boundedness, continuity, measurability). Is it true that in this case the above functions can be represented as a sum of a derivation and a linear function? Analogous statements ensuring linearity will also be presented.
引用
收藏
页码:355 / 370
页数:16
相关论文
共 13 条
[1]  
[Anonymous], 2009, CAUCHYS EQUATION JEN
[2]   Hyers-Ulam stability of derivations and linear functions [J].
Boros, Zoltan ;
Gselmann, Eszter .
AEQUATIONES MATHEMATICAE, 2010, 80 (1-2) :13-25
[3]  
Halter-Koch F, 2000, PUBL MATH-DEBRECEN, V56, P179
[4]  
Halter-Koch F., 2000, MATH PANNON, V11, P187
[5]  
Halter-Koch F., 2000, AEQUATIONES MATH, V59, P298
[6]  
HALTERKOCH F, 2001, AEQUATIONES MATH, V62, P184
[7]  
HALTERKOCH F, 1999, AEQUATIONES MATH, V58, P176
[8]   ON CAUCHYS FUNCTIONAL EQUATION [J].
JURKAT, WB .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1965, 16 (04) :683-&
[9]  
Kannappan P.L., 1970, Aequ. Math., V4, P163
[10]  
Kurepa S., 1964, Glasnik Mat.-Fiz Astron. (II), V19, P23