Numerical Experiments on Hydrodynamic Performance and the Wake of a Self-Starting Vertical Axis Tidal Turbine Array

被引:5
作者
Zhu, Lining [1 ]
Hou, Erhu [1 ]
Zhou, Qingwei [1 ]
Wu, He [1 ]
机构
[1] Natl Ocean Technol Ctr, Tianjin 300112, Peoples R China
基金
国家重点研发计划;
关键词
vertical axis turbine; turbine array; self-starting; numerical simulations; power coefficient; wake development; HYDROKINETIC TURBINE; WIND TURBINE; SIMULATIONS; IMPROVEMENT;
D O I
10.3390/jmse10101361
中图分类号
U6 [水路运输]; P75 [海洋工程];
学科分类号
0814 ; 081505 ; 0824 ; 082401 ;
摘要
In this paper, based on the CFD software ANSYS-Fluent, two-dimensional numerical models are established to investigate the hydrodynamic performance of a self-starting H-Darrius vertical axis tidal turbine (VATT) array of three turbines in a triangular layout with 3D in axial and radial distance. Three main aspects are explored in this study: (1) the self-starting performance, power coefficient, flow fields, and blade force of the double-row VATT array, which are compared with a stand-alone turbine, (2) the wake development of the front and rear displacement turbines, and (3) the feasibility of the double-row self-starting VATT array in practical applications. It is found that the power coefficients of the three turbines in the array all improved compared with that of the stand-alone turbine, and as the load increased, the difference between the averaged power coefficient of the array and a stand-alone turbine was more obvious, with a maximum difference of 3%. The main effects of the front turbines on the rear turbine are energy utilization and turbine vibration. Due to the beam effect between the front turbines, the incident flow rate of the rear turbine increased to approximately 1.2 times the free flow rate. However, the greater rotational fluctuations of the rear turbine mean that although it had a higher power factor, it was more susceptible to fatigue damage. The wake of the rear turbine in the array had a much larger area of influence on both the length and width, but the velocity deficit recovered more quickly to over 95% at a distance of 10D behind it. The rate of wake velocity recovery is load-dependent for a stand-alone self-starting turbine, but this was not evident in the arrays. The positive torque of the turbine is mainly generated when the blade rotates through an azimuth angle from 45 degrees to 160 degrees and mainly benefits from the inner side of the blade. For the double-row three-turbine array, the axial and radial spacing of 3D is reasonable in practical applications.
引用
收藏
页数:19
相关论文
共 41 条
[1]   A numerical study on the aerodynamic performance and the self-starting characteristics of a Darrieus wind turbine considering its moment of inertia [J].
Arab, A. ;
Javadi, M. ;
Anbarsooz, M. ;
Moghiman, M. .
RENEWABLE ENERGY, 2017, 107 :298-311
[2]   Study on start-up characteristics of H-Darrieus vertical axis wind turbines comprising NACA 4-digit series blade airfoils [J].
Asr, Mandi Torabi ;
Nezhad, Erfan Zal ;
Mustapha, Faizal ;
Wiriadidjaja, Surjatin .
ENERGY, 2016, 112 :528-537
[3]   Frequency analysis of the power output for a vertical axis marine turbine operating in the wake [J].
Birjandi, Amir Hossein ;
Bibeau, Eric Louis .
OCEAN ENGINEERING, 2016, 127 :325-334
[4]  
Bos R, 2012, THESIS DELFT U TECHN
[5]   A Review of Numerical Modelling of Multi-Scale Wind Turbines and Their Environment [J].
Calautit, Katrina ;
Aquino, Angelo ;
Calautit, John Kaiser ;
Nejat, Payam ;
Jomehzadeh, Fatemeh ;
Hughes, Ben Richard .
COMPUTATION, 2018, 6 (01)
[6]   Aerodynamic investigation of the start-up process of H-type vertical axis wind turbines using CFD [J].
Celik, Yunus ;
Ma, Lin ;
Ingham, Derek ;
Pourkashanian, Mohamed .
JOURNAL OF WIND ENGINEERING AND INDUSTRIAL AERODYNAMICS, 2020, 204
[7]   Improvement of sinusoidal pitch for vertical-axis hydrokinetic turbines an influence of rotational inertia [J].
Chen, Bing ;
Nagata, Shuichi ;
Murakami, Tengen ;
Ning, Dezhi .
OCEAN ENGINEERING, 2019, 179 :273-284
[8]   Numerical investigation of vertical-axis tidal turbines with sinusoidal pitching blades [J].
Chen, Bing ;
Su, Shaoshuai ;
Viola, Ignazio Maria ;
Greated, Clive A. .
OCEAN ENGINEERING, 2018, 155 :75-87
[9]   Observations of the starting behaviour of a small horizontal-axis wind turbine [J].
Ebert, PR ;
Wood, DH .
RENEWABLE ENERGY, 1997, 12 (03) :245-257
[10]   Hydrokinetic turbine array analysis and optimization integrating blockage effects and turbine-wake interactions [J].
Gauvin-Tremblay, Olivier ;
Dumas, Guy .
RENEWABLE ENERGY, 2022, 181 :851-869