NiFe-layered double hydroxides: a bifunctional O2 electrode catalyst for non-aqueous Li-O2 batteries

被引:28
作者
Chitravathi, S. [1 ]
Kumar, Surender [1 ]
Munichandraiah, N. [1 ]
机构
[1] Indian Inst Sci, Dept Inorgan & Phys Chem, Bangalore 560012, Karnataka, India
关键词
OXYGEN EVOLUTION REACTION; REDUCED GRAPHENE OXIDE; ELECTROCHEMICAL PROPERTIES; AIR BATTERY; LITHIUM; REDUCTION; PERFORMANCE; ELECTROCATALYST; SOLVENTS; SUPERCAPACITOR;
D O I
10.1039/c6ra19054e
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Ascertaining an appropriate cathode material for the Li-O-2 battery system is one of the main tasks at present. To deal with this, in this study, a highly active and stable NiFe-layered double hydroxide (LDH) is synthesized via a hydrothermal method. The characterisation results showed the presence of LDH nanoplates covered with Ni and Fe nanoparticles. In addition to the as prepared NiFe-LDH, its calcinated products at three different temperatures, 300, 500 and 800 degrees C are also studied for the oxygen reduction reaction (ORR) in a non-aqueous electrolyte by using cyclic voltammetry and rotating disc electrode (RDE) techniques. The as prepared NiFe-LDH exhibits a comparatively greater catalytic activity for ORR than its calcinated products. Li-O2 battery tests are then carried out to further evaluate the catalytic activity of the products in 1.0 M LiPF6 in tetraethylene glycol dimethyl ether (TEGDME). NiFe-LDH exhibited superior catalytic performance with a specific discharge capacity of similar to 3218 mA h g(-1) at 0.1 mA cm(-2). The discharge plateau appears at 2.75 V which is close to theoretical potential (2.9-3.1 V) for Li2O2 formation. A stable specific discharge capacity of similar to 1728 mA h g(-1) is obtained even after 30 cycles at 0.1 mA cm(-2). The discharge-recharge voltage gap is about similar to 0.9 V.
引用
收藏
页码:103106 / 103115
页数:10
相关论文
共 47 条
[1]   A polymer electrolyte-based rechargeable lithium/oxygen battery [J].
Abraham, KM ;
Jiang, Z .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1996, 143 (01) :1-5
[2]   Bionanocomposites based on alginate-zein/layered double hydroxide materials as drug delivery systems [J].
Alcantara, A. C. S. ;
Aranda, P. ;
Darder, M. ;
Ruiz-Hitzky, E. .
JOURNAL OF MATERIALS CHEMISTRY, 2010, 20 (42) :9495-9504
[3]  
Bard A.J, 2002, Student Solutions Manual to accompany Electrochemical Methods: Fundamentals and Applicaitons, V2e
[4]   HYDROTALCITE-TYPE ANIONIC CLAYS: PREPARATION, PROPERTIES AND APPLICATIONS [J].
Cavani, F. ;
Trifiro, F. ;
Vaccari, A. .
CATALYSIS TODAY, 1991, 11 (02) :173-301
[5]   Ultra-low overpotential and high rate capability in Li-O2 batteries through surface atom arrangement of PdCu nanocatalysts [J].
Choi, Ran ;
Jung, Jaepyeong ;
Kim, Gyubong ;
Song, Kyeongse ;
Kim, Yong-Il ;
Jung, Sung Chul ;
Han, Young-Kyu ;
Song, Hyunjoon ;
Kang, Yong-Mook .
ENERGY & ENVIRONMENTAL SCIENCE, 2014, 7 (04) :1362-1368
[7]   α-MnO2 nanowires:: A catalyst for the O2 electrode in rechargeable lithium batteries [J].
Debart, Aurelie ;
Paterson, Allan J. ;
Bao, Jianli ;
Bruce, Peter G. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2008, 47 (24) :4521-4524
[8]   Structural aspects of layered double hydroxides [J].
Evans, DG ;
Slade, RCT .
LAYERED DOUBLE HYDROXIDES, 2006, 119 :1-87
[9]   The Lithium-Oxygen Battery with Ether-Based Electrolytes [J].
Freunberger, Stefan A. ;
Chen, Yuhui ;
Drewett, Nicholas E. ;
Hardwick, Laurence J. ;
Barde, Fanny ;
Bruce, Peter G. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2011, 50 (37) :8609-8613
[10]   Lithium - Air Battery: Promise and Challenges [J].
Girishkumar, G. ;
McCloskey, B. ;
Luntz, A. C. ;
Swanson, S. ;
Wilcke, W. .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2010, 1 (14) :2193-2203