A binary additive problem of Erdos and the order of 2 mod p2

被引:13
作者
Granville, A [1 ]
Soundararajan, K
机构
[1] Univ Georgia, Dept Math, Athens, GA 30602 USA
[2] Princeton Univ, Dept Math, Princeton, NJ 08544 USA
关键词
Fermat quotients; order mode p(2); squarefree numbers; powers of 2;
D O I
10.1023/A:1009786614584
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that the problem of representing every odd positive integer as the sum of a squarefree number and a power of 2, is strongly related to the problem of showing that p(2) divides 2(p-1) - 1 for "few" primes p.
引用
收藏
页码:283 / 298
页数:16
相关论文
共 17 条
[1]  
[Anonymous], 1951, J CHINESE MATH SOC
[2]   A search for Wieferich and Wilson primes [J].
Crandall, R ;
Dilcher, K ;
Pomerance, C .
MATHEMATICS OF COMPUTATION, 1997, 66 (217) :433-449
[3]   SUM OF A PRIME AND OF 2 POWERS OF 2 [J].
CROCKER, R .
PACIFIC JOURNAL OF MATHEMATICS, 1971, 36 (01) :103-&
[4]  
de Polignac A., 1849, C R ACAD SCI PARIS M, V29, P738
[5]  
dePolignac A., 1849, C R ACAD SCI PARIS M, V29, P397
[6]  
DESHOUILLERS JM, 1993, MATH COMPUT, V617, P209
[7]   SUM EPSILOND/2N-1 D-1 [J].
ERDOS, P .
ISRAEL JOURNAL OF MATHEMATICS, 1971, 9 (01) :43-&
[8]  
ERDOS P, 1935, Q J MATH OXFORD SER, V6, P124
[9]  
Erdos P., 1950, Summa Brasil. Math., V2, P113
[10]   PRIMES AND POWERS OF 2 [J].
GALLAGHER, PX .
INVENTIONES MATHEMATICAE, 1975, 29 (02) :125-142