The trigonometric Rosen-Morse potential in the supersymmetric quantum mechanics and its exact solutions

被引:58
作者
Compean, CB [1 ]
Kirchbach, M [1 ]
机构
[1] Univ Autonoma San Luis Potosi, Inst Fis, San Luis Potosi 78290, SLP, Mexico
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 2006年 / 39卷 / 03期
关键词
D O I
10.1088/0305-4470/39/3/007
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The analytic solutions of the one-dimensional Schrodinger equation for the trigonometric Rosen-Morse potential reported in the literature rely upon the Jacobi polynomials with complex indices and complex arguments. We first draw attention to the fact that the complex Jacobi polynomials have nontrivial orthogonality properties which make them uncomfortable for physics applications. Instead we here solve the above equation in terms of real orthogonal polynomials. The new solutions are used in the construction of the quantum-mechanical superpotential.
引用
收藏
页码:547 / 557
页数:11
相关论文
共 14 条
  • [1] Abramowitz M., 1972, HDB MATH FUNCTIONS F
  • [2] ALVAREZGAUME L, 2004, PHYS LETT B, V592, P1
  • [3] BECKERMANN B, 2003, MATHCA0311055
  • [4] Cooper F., 2001, Supersymmetry In Quantum Mechanics
  • [5] CRYER CW, 1970, B UNIONE MAT ITAL, V25, P1
  • [6] MAPPING OF SHAPE INVARIANT POTENTIALS UNDER POINT CANONICAL-TRANSFORMATIONS
    DE, R
    DUTT, R
    SUKHATME, U
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1992, 25 (13): : L843 - L850
  • [7] Dennery P., 1996, MATH PHYS
  • [8] JASSO CBC, 2005, THESIS AUTONOMOUS U
  • [9] Kirchbach M, 2004, REV MEX FIS, V50, P54
  • [10] Baryons in O(4) and the vibron model
    Kirchbach, M
    Moshinsky, M
    Smirnov, YF
    [J]. PHYSICAL REVIEW D, 2001, 64 (11)