Standard special generic maps of homotopy spheres into Euclidean spaces

被引:3
作者
Wrazidlo, Dominik J. [1 ]
机构
[1] Heidelberg Univ, Math Inst, Neuenheimer Feld 205, D-69120 Heidelberg, Germany
关键词
Special generic map; Stein factorization; Homotopy sphere; Gromoll filtration;
D O I
10.1016/j.topol.2017.11.037
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A so-called special generic map is by definition a map between smooth manifolds all of whose singularities are definite fold points. It is in general an open problem posed by Saeki in 1993 to determine the set of integers p for which a given homotopy sphere admits a special generic map into R-p. By means of the technique of Stein factorization we introduce and study certain special generic maps of homotopy spheres into Euclidean spaces called standard. Modifying a construction due to Weiss, we show that standard special generic maps give naturally rise to a filtration of the group of homotopy spheres by subgroups that is strongly related to the Gromoll filtration. Finally, we apply our result to some concrete homotopy spheres, which in particular answers Saeki's problem for the Milnor 7-sphere. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:348 / 358
页数:11
相关论文
共 17 条
[1]  
[Anonymous], 1965, MATH NOTES+
[2]  
[Anonymous], 1961, Commentarii mathematici Helvetici
[3]  
Berger M., 1960, CR HEBD ACAD SCI, V14, P161
[4]  
Burlet O., 1974, Enseignement Math., V20, P275
[5]  
Cerf J., 1970, PUBL MATH-PARIS, V39, P5, DOI 10.1007/BF02684687
[6]   The Gromoll filtration, KO-characteristic classes and metrics of positive scalar curvature [J].
Crowley, Diarmuid ;
Schick, Thomas .
GEOMETRY & TOPOLOGY, 2013, 17 (03) :1773-1789
[7]  
Eliashberg Y., 1970, MATH USSR IZV, V4, P1119, DOI DOI 10.1070/IM1970V004N05ABEH000946
[8]  
GOLUBITSKY M, 1973, GRAD TEXTS MATH, V14
[9]   DIFFERENZIERBARE STRUKTUREN UND METRIKEN POSITIVER KRUMMUNG AUF SPHAREN [J].
GROMOLL, D .
MATHEMATISCHE ANNALEN, 1966, 164 (04) :353-&
[10]   A PROOF OF THE SMALE CONJECTURE, DIFF(S3) CONGRUENT-TO O(4) [J].
HATCHER, AE .
ANNALS OF MATHEMATICS, 1983, 117 (03) :553-607