On the estimation and correction of discretization error in molecular dynamics averages

被引:6
作者
Arizumi, Nana [1 ]
Bond, Stephen D. [2 ]
机构
[1] Univ Illinois, Dept Comp Sci, Urbana, IL 61801 USA
[2] Sandia Natl Labs, Multiphys Simulat Technol Dept, Albuquerque, NM 87185 USA
关键词
Molecular dynamics; Statistical mechanics; Ensemble averages; Symplectic integrators; Nose-Poincare Hamiltonian; SIMULATIONS;
D O I
10.1016/j.apnum.2012.08.005
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The computation of statistical averages is one of the most important applications of molecular dynamics simulation, allowing for the estimation of macroscopic physical quantities through averages of observables sampled along microscopic trajectories. In this article, we investigate the impact of discretization error on the accuracy of molecular dynamics averages. Given a Hamiltonian system and a symplectic integrator, new weighting methods are derived to better approximate averages of certain observables, without changing the system or integrator. These new methods are shown to reduce discretization error and enhance the order of accuracy without high-overhead calculations. (C) 2012 IMACS. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:1938 / 1953
页数:16
相关论文
共 33 条
[1]  
Akhmatskaya E., 2011, Prog. Nucl. Sci. Technol., V2, P447, DOI [10.15669/pnst.2.447, DOI 10.15669/PNST.2.447]
[2]   GSHMC: An efficient method for molecular simulation [J].
Akhmatskaya, Elena ;
Reich, Sebastian .
JOURNAL OF COMPUTATIONAL PHYSICS, 2008, 227 (10) :4934-4954
[3]  
Allen M. P., 2017, COMPUTER SIMULATION
[4]  
[Anonymous], STATE ART NUMERICAL
[5]  
[Anonymous], 1996, IMA VOLUMES MATH ITS
[6]  
[Anonymous], STAT PHYS
[7]  
[Anonymous], 2002, Molecular Modeling and Simulation
[8]   ON THE HAMILTONIAN INTERPOLATION OF NEAR-TO-THE-IDENTITY SYMPLECTIC MAPPINGS WITH APPLICATION TO SYMPLECTIC INTEGRATION ALGORITHMS [J].
BENETTIN, G ;
GIORGILLI, A .
JOURNAL OF STATISTICAL PHYSICS, 1994, 74 (5-6) :1117-1143
[9]   The Nose-Poincare method for constant temperature molecular dynamics [J].
Bond, SD ;
Leimkuhler, BJ ;
Laird, BB .
JOURNAL OF COMPUTATIONAL PHYSICS, 1999, 151 (01) :114-134
[10]   Long-time averaging for integrable Hamiltonian dynamics [J].
Cancès, E ;
Castella, F ;
Chartier, P ;
Faou, E ;
Le Bris, C ;
Legoll, F ;
Turinici, G .
NUMERISCHE MATHEMATIK, 2005, 100 (02) :211-232