Schrodinger operators with sparse potentials: Asymptotics of the Fourier transform of the spectral measure

被引:20
作者
Krutikov, D [1 ]
Remling, C
机构
[1] Univ Essen Gesamthsch, Fachbereich Math Informat, D-45117 Essen, Germany
[2] Univ Osnabruck, Fachbereich Math Informat, D-49069 Osnabruck, Germany
关键词
D O I
10.1007/s002200100552
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the pointwise behavior of the Fourier transform of the spectral measure for discrete one-dimensional Schrodinger operators with sparse potentials. We find a resonance structure which admits a physical interpretation in terms of a simple quasiclassical model. We also present an improved version of known results on the spectrum of such operators.
引用
收藏
页码:509 / 532
页数:24
相关论文
共 18 条
[2]  
EARL A., 1955, THEORY ORDINARY DIFF
[3]  
KILLIP R, IN PRESS J FUNCT ANA
[4]   Modified Prufer and EFGP transforms and the spectral analysis of one-dimensional Schrodinger operators [J].
Kiselev, A ;
Last, Y ;
Simon, B .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1998, 194 (01) :1-45
[5]   Effective perturbation methods for one-dimensional Schrodinger operators [J].
Kiselev, A ;
Remling, C ;
Simon, B .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1999, 151 (02) :290-312
[6]  
KRUTIKOV D, 2001, THESIS OSNABRUCK
[7]   Eigenfunctions, transfer matrices, and absolutely continuous spectrum of one-dimensional Schrodinger operators [J].
Last, Y ;
Simon, B .
INVENTIONES MATHEMATICAE, 1999, 135 (02) :329-367
[8]   Quantum dynamics and decompositions of singular continuous spectra [J].
Last, Y .
JOURNAL OF FUNCTIONAL ANALYSIS, 1996, 142 (02) :406-445
[9]   FOURIER-STIELTJES COEFFICIENTS AND ASYMPTOTIC-DISTRIBUTION MODULO-1 [J].
LYONS, R .
ANNALS OF MATHEMATICS, 1985, 122 (01) :155-170
[10]  
Meyer Y., 1972, ALGEBRAIC NUMBERS HA