COMPLEX-ANALYTIC STRUCTURES ON MOMENT-ANGLE MANIFOLDS

被引:1
作者
Panov, Taras [1 ,2 ,3 ]
Ustinovsky, Yuri [1 ]
机构
[1] Moscow MV Lomonosov State Univ, Dept Math & Mech, Moscow 119991, Russia
[2] Inst Theoret & Expt Phys, Moscow 117259, Russia
[3] Russian Acad Sci, Inst Informat Transmiss Problems, Moscow 117901, Russia
基金
俄罗斯基础研究基金会;
关键词
Moment-angle manifold; simplicial fan; simple polytope; complex structure; Dolbeault cohomology; Hodge numbers;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show that the moment-angle manifolds corresponding to complete simplicial fans admit non-Kahler complex-analytic structures. This generalises the known construction of complex-analytic structures on polytopal moment-angle manifolds, coming from identifying them as LVM-manifolds. We proceed by describing Dolbeault cohomology and some Hodge numbers of moment-angle manifolds by applying the Borel spectral sequence to holomorphic principal bundles over toric varieties.
引用
收藏
页码:149 / 172
页数:24
相关论文
共 26 条
  • [1] [Anonymous], 2003, GRADUATE TEXTS MATH
  • [2] The polyhedral product functor: A method of decomposition for moment-angle complexes, arrangements and related spaces
    Bahri, A.
    Bendersky, M.
    Cohen, F. R.
    Gitler, S.
    [J]. ADVANCES IN MATHEMATICS, 2010, 225 (03) : 1634 - 1668
  • [3] Borel A., 1966, TOPOLOGICAL METHODS
  • [4] Compact complex manifolds: an extension of Meersseman's and Lopez de Medrano-Verjovsky's construction
    Bosio, F
    [J]. ANNALES DE L INSTITUT FOURIER, 2001, 51 (05) : 1259 - +
  • [5] Real quadrics in Cn, complex manifolds and convex polytopes
    Bosio, Frederic
    Meersseman, Laurent
    [J]. ACTA MATHEMATICA, 2006, 197 (01) : 53 - 127
  • [6] BUCHSTABER V, 2002, U LECT SERIES, V24
  • [7] Buchstaber V.M., 1999, P STEKLOV I MATH+, V225, P87
  • [8] SPACES OF POLYTOPES AND COBORDISM OF QUASITORIC MANIFOLDS
    Buchstaber, Victor M.
    Panov, Taras E.
    Ray, Nigel
    [J]. MOSCOW MATHEMATICAL JOURNAL, 2007, 7 (02) : 219 - 242
  • [9] Cox D. A., 1995, J ALGEBRAIC GEOM, V4, P17
  • [10] Non-kahler manifolds and GIT-quotients
    Cupit-Foutou, Stephanie
    Zaffran, Dan
    [J]. MATHEMATISCHE ZEITSCHRIFT, 2007, 257 (04) : 783 - 797