Transcriptome analysis of the white pine blister rust pathogen Cronartium ribicola: de novo assembly, expression profiling, and identification of candidate effectors

被引:41
作者
Liu, Jun-Jun [1 ]
Sturrock, Rona N. [1 ]
Sniezko, Richard A. [2 ]
Williams, Holly [1 ]
Benton, Ross [1 ]
Zamany, Arezoo [1 ]
机构
[1] Nat Resources Canada, Pacific Forestry Ctr, Canadian Forest Serv, Victoria, BC V8Z 1M5, Canada
[2] USDA Forest Serv, Dorena Genet Resource Ctr, Cottage Grove, OR 97424 USA
来源
BMC GENOMICS | 2015年 / 16卷
关键词
Cronartium ribicola; Effector; Pathogenicity; RNA-seq; Transcriptome profiling; SECRETED PROTEINS; GENE-EXPRESSION; HOST-RESISTANCE; FLAX RUST; GENOME; FUNGI; ANNOTATION; UPDATE;
D O I
10.1186/s12864-015-1861-1
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Background: The fungus Cronartium ribicola (Cri) is an economically and ecologically important forest pathogen that causes white pine blister rust (WPBR) disease on five-needle pines. To cause stem cankers and kill white pine trees the fungus elaborates a life cycle with five stages of spore development on five-needle pines and the alternate host Ribes plants. To increase our understanding of molecular WP-BR interactions, here we report genome-wide transcriptional profile analysis of C. ribicola using RNA-seq. Results: cDNA libraries were constructed from aeciospore, urediniospore, and western white pine (Pinus monticola) tissues post Cri infection. Over 200 million RNA-seq 100-bp paired-end (PE) reads from rust fungal spores were de novo assembled and a reference transcriptome was generated with 17,880 transcripts that were expressed from 13,629 unigenes. A total of 734 unique proteins were predicted as a part of the Cri secretome from complete open reading frames (ORFs), and 41 % of them were Cronartium-specific. This study further identified a repertoire of candidate effectors and other pathogenicity determinants. Differentially expressed genes (DEGs) were identified to gain an understanding of molecular events important during the WPBR fungus life cycle by comparing Cri transcriptomes at different infection stages. Large-scale changes of in planta gene expression profiles were observed, revealing that multiple fungal biosynthetic pathways were enhanced during mycelium growth inside infected pine stem tissues. Conversely, many fungal genes that were up-regulated at the urediniospore stage appeared to be signalling components and transporters. The secreted fungal protein genes that were up-regulated in pine needle tissues during early infection were primarily associated with cell wall modifications, possibly to mask the rust pathogen from plant defenses. Conclusion: This comprehensive transcriptome profiling substantially improves our current understanding of molecular WP-BR interactions. The repertoire of candidate effectors and other putative pathogenicity determinants identified here are valuable for future functional analysis of Cri virulence and pathogenicity.
引用
收藏
页数:16
相关论文
共 73 条
[1]   Comparative analysis of secretomes in basidiomycete fungi [J].
Alfaro, Manuel ;
Oguiza, Jose A. ;
Ramirez, Lucia ;
Pisabarro, Antonio G. .
JOURNAL OF PROTEOMICS, 2014, 102 :28-43
[2]   Differential gene expression by Moniliophthora roreri while overcoming cacao tolerance in the field [J].
Bailey, Bryan A. ;
Melnick, Rachel L. ;
Strem, Mary D. ;
Crozier, Jayne ;
Shao, Jonathan ;
Sicher, Richard ;
Phillips-Mora, Wilberth ;
Ali, Shahin S. ;
Zhang, Dapeng ;
Meinhardt, Lyndel .
MOLECULAR PLANT PATHOLOGY, 2014, 15 (07) :711-729
[3]   Genome-wide transcriptional profiling of Botrytis cinerea genes targeting plant cell walls during infections of different hosts [J].
Blanco-Ulate, Barbara ;
Morales-Cruz, Abraham ;
Amrine, Katherine C. H. ;
Labavitch, John M. ;
Powell, Ann L. T. ;
Cantu, Dario .
FRONTIERS IN PLANT SCIENCE, 2014, 5
[4]   Trimmomatic: a flexible trimmer for Illumina sequence data [J].
Bolger, Anthony M. ;
Lohse, Marc ;
Usadel, Bjoern .
BIOINFORMATICS, 2014, 30 (15) :2114-2120
[5]   A critical role for peptidoglycan N-deacetylation in Listeria evasion from the host innate immune system [J].
Boneca, Ivo G. ;
Dussurget, Olivier ;
Cabanes, Didier ;
Nahori, Marie-Anne ;
Sousa, Sandra ;
Lecuit, Marc ;
Psylinakis, Emmanuel ;
Bouriotis, Vassilis ;
Hugot, Jean-Pierre ;
Giovannini, Marco ;
Coyle, Anthony ;
Bertin, John ;
Namane, Abdelkader ;
Rousselle, Jean-Claude ;
Cayet, Nadege ;
Prevost, Marie-Christine ;
Balloy, Viviane ;
Chignard, Michel ;
Philpottt, Dana J. ;
Cossart, Pascale ;
Girardin, Stephen E. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2007, 104 (03) :997-1002
[6]   Role of swollenin, an expansin-like protein from Trichoderma, in plant root colonization [J].
Brotman, Yariv ;
Briff, Eden ;
Viterbo, Ada ;
Chet, Ilan .
PLANT PHYSIOLOGY, 2008, 147 (02) :779-789
[7]   Using transcription of six Puccinia triticina races to identify the effective secretome during infection of wheat [J].
Bruce, Myron ;
Neugebauer, Kerri A. ;
Joly, David L. ;
Migeon, Pierre ;
Cuomo, Christina A. ;
Wang, Shichen ;
Akhunov, Eduard ;
Bakkeren, Guus ;
Kolmer, James A. ;
Fellers, John P. .
FRONTIERS IN PLANT SCIENCE, 2014, 4
[8]   Genome analyses of the wheat yellow (stripe) rust pathogen Puccinia striiformis f. sp tritici reveal polymorphic and haustorial expressed secreted proteins as candidate effectors [J].
Cantu, Dario ;
Segovia, Vanesa ;
MacLean, Daniel ;
Bayles, Rosemary ;
Chen, Xianming ;
Kamoun, Sophien ;
Dubcovsky, Jorge ;
Saunders, Diane G. O. ;
Uauy, Cristobal .
BMC GENOMICS, 2013, 14
[9]   Next Generation Sequencing Provides Rapid Access to the Genome of Puccinia striiformis f. sp tritici, the Causal Agent of Wheat Stripe Rust [J].
Cantu, Dario ;
Govindarajulu, Manjula ;
Kozik, Alex ;
Wang, Meinan ;
Chen, Xianming ;
Kojima, Kenji K. ;
Jurka, Jerzy ;
Michelmore, Richard W. ;
Dubcovsky, Jorge .
PLOS ONE, 2011, 6 (08)
[10]   Haustorially expressed secreted proteins from flax rust are highly enriched for avirulence elicitors [J].
Catanzariti, AM ;
Dodds, PN ;
Lawrence, GJ ;
Ayliffe, MA ;
Ellis, JG .
PLANT CELL, 2006, 18 (01) :243-256