Heat Kernel Estimates for Random Walks on Some Kinds of One-dimensional Continuum Percolation Clusters

被引:0
作者
Misumi, Jun [1 ]
机构
[1] Univ Tokyo, Tokyo 1138654, Japan
关键词
Continuum percolation; Random walk; Heat kernel estimate; Effective resistance; INCIPIENT INFINITE CLUSTER;
D O I
10.3836/tjm/1313074443
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider random walks on random graphs determined by a some kind of continuum percolation on R. The vertex set of the random graph is given by the Poisson points conditioned that all points of Z are contained. The edge set of the random graph is determined by the random radii of the spheres centered at each points. We give heat kernel estimates for the random walks under the condition on the moment of the random radii. We will also discuss random walks on continuum percolation clusters in R-d, d >= 2.
引用
收藏
页码:1 / 17
页数:17
相关论文
共 10 条
[1]  
[Anonymous], MATH JPN
[2]   Random walk on the incipient infinite cluster for oriented percolation in high dimensions [J].
Barlow, Martin T. ;
Jarai, Antal A. ;
Kumagai, Takashi ;
Slade, Gordon .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2008, 278 (02) :385-431
[3]   Random walk on the incipient infinite cluster on trees [J].
Barlow, Martin T. ;
Kumagai, Takashi .
ILLINOIS JOURNAL OF MATHEMATICS, 2006, 50 (01) :33-65
[4]   Random walks on supercritical percolation clusters [J].
Barlow, MT .
ANNALS OF PROBABILITY, 2004, 32 (04) :3024-3084
[5]   Transience, recurrence and critical behavior for long-range percolation [J].
Berger, N .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2002, 226 (03) :531-558
[6]  
Crawford N., 2009, ARXIV09072434
[7]   RANDOM-WALK ON THE INFINITE CLUSTER OF THE PERCOLATION MODEL [J].
GRIMMETT, GR ;
KESTEN, H ;
ZHANG, Y .
PROBABILITY THEORY AND RELATED FIELDS, 1993, 96 (01) :33-44
[8]   Heat kernel estimates for strongly recurrent random walk on random media [J].
Kumagai, Takashi ;
Misumi, Jun .
JOURNAL OF THEORETICAL PROBABILITY, 2008, 21 (04) :910-935
[9]  
Meester R., 1996, CONTINUUM PERCOLATIO
[10]  
Tanemura H, 1994, KODAI MATH J, V17, P228, DOI 10.2996/kmj/1138039962