Plasmonics: Metal-worthy methods and materials in nanophotonics

被引:57
作者
Dionne, Jennifer A. [1 ]
Atwater, Harry A. [2 ]
机构
[1] Stanford Univ, Dept Mat Sci & Engn, Stanford, CA 94305 USA
[2] CALTECH, Dept Appl Phys, Thomas J Watson Labs, Pasadena, CA 91125 USA
关键词
SUBWAVELENGTH WAVE-GUIDE; SURFACE-PLASMONS; SINGLE GOLD; QUANTUM; NANOPARTICLES; RESONANCES; SCATTERING; FIELD; GENERATION; POLARITONS;
D O I
10.1557/mrs.2012.171
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Electrons and photons can coexist as a single entity called a surface plasmon-an elementary excitation found at the interface between a conductor and an insulator. Because of their hybrid electric and photonic nature, plasmons allow photons to be precisely controlled on the nanoscale. Plasmons are evident in the vivid hues of rose windows, which derive their color from small metallic nanoparticles embedded in the glass. They also provide the basis for color-changing biosensors (such as home pregnancy tests), photothermal cancer treatments, improved photovoltaic cell efficiencies, and nanoscale lasers. While surface plasmons were first identified nearly 55 years ago, many of their exciting applications are yet to come. This issue of MRS Bulletin reviews the progress and promise of plasmonics-from the characterization tools that have allowed nanometer-scale probing of plasmons to the new materials that may enable low-loss, active, and quantum plasmonics. Within reach are applications ranging from integrated plasmonic circuits for nanophotonic computation to plasmonic optical tweezers for manipulation of nano-sized particles and proteins.
引用
收藏
页码:717 / 724
页数:8
相关论文
共 119 条
[1]   Generation of single optical plasmons in metallic nanowires coupled to quantum dots [J].
Akimov, A. V. ;
Mukherjee, A. ;
Yu, C. L. ;
Chang, D. E. ;
Zibrov, A. S. ;
Hemmer, P. R. ;
Park, H. ;
Lukin, M. D. .
NATURE, 2007, 450 (7168) :402-406
[2]   Resolving the electromagnetic mechanism of surface-enhanced light scattering at single hot spots [J].
Alonso-Gonzalez, P. ;
Albella, P. ;
Schnell, M. ;
Chen, J. ;
Huth, F. ;
Garcia-Etxarri, A. ;
Casanova, F. ;
Golmar, F. ;
Arzubiaga, L. ;
Hueso, L. E. ;
Aizpurua, J. ;
Hillenbrand, R. .
NATURE COMMUNICATIONS, 2012, 3
[3]   Plasmon-assisted transmission of entangled photons [J].
Altewischer, E ;
van Exter, MP ;
Woerdman, JP .
NATURE, 2002, 418 (6895) :304-306
[4]   Tuning the scattering response of optical nanoantennas with nanocircuit loads [J].
Alu, Andrea ;
Engheta, Nader .
NATURE PHOTONICS, 2008, 2 (05) :307-310
[5]  
Anker J. N. J., 2008, NAT MATER, V7, P8
[6]   OBSERVATION OF A SINGLE-BEAM GRADIENT FORCE OPTICAL TRAP FOR DIELECTRIC PARTICLES [J].
ASHKIN, A ;
DZIEDZIC, JM ;
BJORKHOLM, JE ;
CHU, S .
OPTICS LETTERS, 1986, 11 (05) :288-290
[7]   OPTICAL TRAPPING AND MANIPULATION OF SINGLE CELLS USING INFRARED-LASER BEAMS [J].
ASHKIN, A ;
DZIEDZIC, JM ;
YAMANE, T .
NATURE, 1987, 330 (6150) :769-771
[8]  
Atwater HA, 2010, NAT MATER, V9, P205, DOI [10.1038/nmat2629, 10.1038/NMAT2629]
[9]   Surface plasmon subwavelength optics [J].
Barnes, WL ;
Dereux, A ;
Ebbesen, TW .
NATURE, 2003, 424 (6950) :824-830
[10]   Generation of traveling surface plasmon waves by free-electron impact [J].
Bashevoy, M. V. ;
Jonsson, F. ;
Krasavin, A. V. ;
Zheludev, N. I. ;
Chen, Y. ;
Stockman, M. I. .
NANO LETTERS, 2006, 6 (06) :1113-1115