E2SCNet: Efficient Multiobjective Evolutionary Automatic Search for Remote Sensing Image Scene Classification Network Architecture

被引:12
作者
Wan, Yuting [1 ,2 ]
Zhong, Yanfei [1 ,2 ]
Ma, Ailong [1 ,2 ]
Wang, Junjue [1 ,2 ]
Zhang, Liangpei [1 ,2 ]
机构
[1] Wuhan Univ, State Key Lab Informat Engn Surveying Mapping & Re, Wuhan 430079, Peoples R China
[2] Wuhan Univ, Collaborat Innovat Ctr Geospatial Technol, Wuhan 430079, Peoples R China
基金
中国国家自然科学基金;
关键词
Deep learning; evolutionary multiobjective opti-mization; neural architecture search (NAS); remote sensing; scene classification; super network; FEATURES;
D O I
10.1109/TNNLS.2022.3220699
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Remote sensing image scene classification methods based on deep learning have been widely studied and discussed. However, most of the network architectures are directly reliant on natural image processing methods and are fixed. A few studies have focused on automatic search mechanisms, but they cannot weigh the interpretation accuracy and the parameter quantity for practical application. As a result, automatic global search methods based on multiobjective evolutionary computation have more advantages. However, in the ranking process, the network individuals with large parameter quantities are easy to eliminate, but a higher accuracy may be obtained after full training. In addition, evolutionary neural architecture search methods often take several days. In this article, in order to solve the above concerns, we propose an efficient multiobjective evolutionary automatic search framework for remote sensing image scene classification deep learning network architectures (E2SCNet). In E2SCNet, eight kinds of lightweight operators are used to build a diversified search space, and the coding connection mode is flexible. In the search process, a large model retention mechanism is implemented through two-step multiobjective modeling and evolutionary search, where one step involves the "parameter quantity and accuracy ", and the other step involves the "parameter quantity and accuracy growth quantity. " Moreover, a super network is constructed to share the weight in the process of individual network evaluation and promote the search speed. The effectiveness of E2SCNet is proven by comparison with several networks designed by human experts and networks obtained by gradient and evolutionary computing-based search methods.
引用
收藏
页码:7752 / 7766
页数:15
相关论文
共 57 条
  • [1] Simple Yet Effective Fine-Tuning of Deep CNNs Using an Auxiliary Classification Loss for Remote Sensing Scene Classification
    Bazi, Yakoub
    Al Rahhal, Mohamad M.
    Alhichri, Haikel
    Alajlan, Naif
    [J]. REMOTE SENSING, 2019, 11 (24)
  • [2] Searching for CNN Architectures for Remote Sensing Scene Classification
    Broni-Bediako, Clifford
    Murata, Yuki
    Mormille, Luiz H. B.
    Atsumi, Masayasu
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [3] EMONAS-Net: Efficient multiobjective neural architecture search using surrogate-assisted evolutionary algorithm for 3D medical image segmentation
    Calisto, Maria Baldeon
    Lai-Yuen, Susana K.
    [J]. ARTIFICIAL INTELLIGENCE IN MEDICINE, 2021, 119
  • [4] BN-NAS: Neural Architecture Search with Batch Normalization
    Chen, Boyu
    Li, Peixia
    Li, Baopu
    Lin, Chen
    Li, Chuming
    Sun, Ming
    Yan, Junjie
    Ouyang, Wanli
    [J]. 2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, : 307 - 316
  • [5] SPNet: Siamese-Prototype Network for Few-Shot Remote Sensing Image Scene Classification
    Cheng, Gong
    Cai, Liming
    Lang, Chunbo
    Yao, Xiwen
    Chen, Jinyong
    Guo, Lei
    Han, Junwei
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [6] Remote Sensing Image Scene Classification Meets Deep Learning: Challenges, Methods, Benchmarks, and Opportunities
    Cheng, Gong
    Xie, Xingxing
    Han, Junwei
    Guo, Lei
    Xia, Gui-Song
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2020, 13 : 3735 - 3756
  • [7] When Deep Learning Meets Metric Learning: Remote Sensing Image Scene Classification via Learning Discriminative CNNs
    Cheng, Gong
    Yang, Ceyuan
    Yao, Xiwen
    Guo, Lei
    Han, Junwei
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2018, 56 (05): : 2811 - 2821
  • [8] Remote Sensing Image Scene Classification: Benchmark and State of the Art
    Cheng, Gong
    Han, Junwei
    Lu, Xiaoqiang
    [J]. PROCEEDINGS OF THE IEEE, 2017, 105 (10) : 1865 - 1883
  • [9] Eiben AE, 2015, What Is an Evolutionary Algorithm?, P25, DOI [DOI 10.1007/978-3-662-44874-83, 10.1007/978-3-662-44874-83, DOI 10.1007/978-3-662-44874-8_3]
  • [10] Elsken T, 2019, J MACH LEARN RES, V20