On the efficiency of quantum algorithms for Hamiltonian simulation

被引:26
作者
Papageorgiou, Anargyros [1 ]
Zhang, Chi [1 ]
机构
[1] Columbia Univ, Dept Comp Sci, New York, NY 10027 USA
基金
美国国家科学基金会;
关键词
Quantum simulation; Complexity; Hamiltonian evolution; Splitting methods; Order of convergence; MANY-BODY THEORIES; COMPUTERS; SYSTEMS; PHYSICS;
D O I
10.1007/s11128-011-0263-9
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study algorithms simulating a system evolving with Hamiltonian H = Sigma(m)(j=1) H-j, where each of the H-j, j = 1, . . . , m, can be simulated efficiently. We are interested in the cost for approximating e(-iHt), t is an element of R, with error epsilon. We consider algorithms based on high order splitting formulas that play an important role in quantum Hamiltonian simulation. These formulas approximate e(-iHt) by a product of exponentials involving the H-j, j = 1, . . . , m. We obtain an upper bound for the number of required exponentials. Moreover, we derive the order of the optimal splitting method that minimizes our upper bound. We show significant speedups relative to previously known results.
引用
收藏
页码:541 / 561
页数:21
相关论文
共 19 条
  • [1] Abramowitz M., 1972, HDB MATH FUNCTIONS
  • [2] AHARONOV A., 2003, P 35 ANN ACM S THEOR, P20, DOI DOI 10.1145/780542.780546
  • [3] [Anonymous], 2000, QUANTUM PHYS
  • [4] Efficient quantum algorithms for simulating sparse Hamiltonians
    Berry, Dominic W.
    Ahokas, Graeme
    Cleve, Richard
    Sanders, Barry C.
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2007, 270 (02) : 359 - 371
  • [5] Quantum Simulators
    Buluta, Iulia
    Nori, Franco
    [J]. SCIENCE, 2009, 326 (5949) : 108 - 111
  • [6] An Example of the Difference Between Quantum and Classical Random Walks
    Childs, Andrew M.
    Farhi, Edward
    Gutmann, Sam
    [J]. QUANTUM INFORMATION PROCESSING, 2002, 1 (1-2) : 35 - 43
  • [7] On the Relationship Between Continuous- and Discrete-Time Quantum Walk
    Childs, Andrew M.
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2010, 294 (02) : 581 - 603
  • [8] Universal Computation by Quantum Walk
    Childs, Andrew M.
    [J]. PHYSICAL REVIEW LETTERS, 2009, 102 (18)
  • [9] FARHI E, 2007, QUANTPH0702144
  • [10] SIMULATING PHYSICS WITH COMPUTERS
    FEYNMAN, RP
    [J]. INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 1982, 21 (6-7) : 467 - 488