Data exchange between zero dimensional code and physics platform in the CFETR integrated system code

被引:3
作者
Xu, Guoliang [1 ]
Shi, Nan [2 ]
Zhou, Yifu [1 ]
Mao, Shifeng [1 ]
Jian, Xiang [3 ]
Chen, Jiale [2 ]
Liu, Li [1 ]
Chan, Vincent [1 ]
Ye, Minyou [1 ]
机构
[1] Univ Sci & Technol China, Sch Nucl Sci & Technol, Hefei 230026, Peoples R China
[2] Chinese Acad Sci, Inst Plasma Phys, 350 Shushanhu Rd, Hefei, Peoples R China
[3] Huazhong Univ Sci & Technol, Sch Elect & Elect Engn, State Key Lab Adv Electromagnet Engn & Technol, Wuhan 430074, Peoples R China
关键词
System code; Zero dimensional code; Physics platform; Data exchange;
D O I
10.1016/j.fusengdes.2016.01.038
中图分类号
TL [原子能技术]; O571 [原子核物理学];
学科分类号
0827 ; 082701 ;
摘要
The China Fusion Engineering Test Reactor (CFETR) integrated system code contains three parts: a zero dimensional code, a physics platform and an engineering platform. We use the zero dimensional code to identify a set of preliminary physics and engineering parameters for CFETR, which is used as input to initiate multi-dimension studies using the physics and engineering platform for design, verification and validation. Effective data exchange between the zero dimensional code and the physical platform is critical for the optimization of CFETR design. For example, in evaluating the impact of impurity radiation on core performance, an open field line code is used to calculate the impurity transport from the first wall boundary to the pedestal. The impurity particle in the pedestal are used as boundary conditions in a transport code for calculating impurity transport in the core plasma and the impact of core radiation on core performance. Comparison of the results from the multi-dimensional study to those from the zero dimensional code is used to further refine the controlled radiation model. The data transfer between the zero dimensional code and the physical platform, including data iteration and validation, and justification for performance parameters will be presented in this paper. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:986 / 990
页数:5
相关论文
共 16 条
  • [1] Tokamak profile prediction using direct gyrokinetic and neoclassical simulation
    Candy, J.
    Holland, C.
    Waltz, R. E.
    Fahey, M. R.
    Belli, E.
    [J]. PHYSICS OF PLASMAS, 2009, 16 (06)
  • [2] Evaluation of CFETR as a Fusion Nuclear Science Facility using multiple system codes
    Chan, V. S.
    Costley, A. E.
    Wan, B. N.
    Garofalo, A. M.
    Leuer, J. A.
    [J]. NUCLEAR FUSION, 2015, 55 (02)
  • [3] PHYSICS BASIS OF A FUSION DEVELOPMENT FACILITY UTILIZING THE TOKAMAK APPROACH
    Chan, V. S.
    Stambaugh, R. D.
    Garofalo, A. M.
    Chu, M. S.
    Fisher, R. K.
    Greenfield, C. M.
    Humphreys, D. A.
    Lao, L. L.
    Leuer, J. A.
    Petrie, T. W.
    Prater, R.
    Staebler, G. M.
    Snyder, P. B.
    St John, H. E.
    Turnbull, A. D.
    Wong, C. P. C.
    Van Zeeland, M. A.
    [J]. FUSION SCIENCE AND TECHNOLOGY, 2010, 57 (01) : 66 - 93
  • [4] COSTER D, 2002, P 19 IAEA FUS EN C L
  • [5] XSC tools: A software suite for tokamak plasma shape control design and validation
    De Tommasi, Gianmaria
    Albanese, Raffaele
    Ambrosino, Giuseppe
    Ariola, Marco
    Mattei, Massimitiano
    Pironti, Alfredo
    Sartori, Filippo
    Villone, Fabio
    [J]. IEEE TRANSACTIONS ON PLASMA SCIENCE, 2007, 35 (03) : 709 - 723
  • [6] Impurity seeding for tokamak power exhaust: from present devices via ITER to DEMO
    Kallenbach, A.
    Bernert, M.
    Dux, R.
    Casali, L.
    Eich, T.
    Giannone, L.
    Herrmann, A.
    McDermott, R.
    Mlynek, A.
    Mueller, H. W.
    Reimold, F.
    Schweinzer, J.
    Sertoli, M.
    Tardini, G.
    Treutterer, W.
    Viezzer, E.
    Wenninger, R.
    Wischmeier, M.
    [J]. PLASMA PHYSICS AND CONTROLLED FUSION, 2013, 55 (12)
  • [7] SEPARATION OF BETA-BARP AND LI IN TOKAMAKS OF NON-CIRCULAR CROSS-SECTION
    LAO, LL
    STJOHN, H
    STAMBAUGH, RD
    PFEIFFER, W
    [J]. NUCLEAR FUSION, 1985, 25 (10) : 1421 - 1436
  • [8] Meneghini L., 2013, Plasma and Fusion Research, V8
  • [9] Pfeiffer W.W., 1980, ONETWO COMPUTER CODE
  • [10] Schneider R, 2000, CONTRIB PLASM PHYS, V40, P328, DOI 10.1002/1521-3986(200006)40:3/4<328::AID-CTPP328>3.0.CO