Quantum fidelity and relative entropy between unitary orbits

被引:19
|
作者
Zhang, Lin [1 ]
Fei, Shao-Ming [2 ,3 ]
机构
[1] Hangzhou Dianzi Univ, Inst Math, Hangzhou 310018, Peoples R China
[2] Capital Normal Univ, Sch Math Sci, Beijing 100048, Peoples R China
[3] Max Planck Inst Math Sci, D-04103 Leipzig, Germany
关键词
quantum fidelity; relative entropy; bi-stochastic matrix; operator monotone function; COMPUTATION;
D O I
10.1088/1751-8113/47/5/055301
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Fidelity and relative entropy are two significant quantities in quantum information theory. We study the quantum fidelity and relative entropy under unitary orbits. The maximal and minimal quantum fidelity and relative entropy between two unitary orbits are explicitly derived. The potential applications in quantum computation and information processing are discussed.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] STUDIES RELATIVE TO RENDEZVOUS BETWEEN CIRCULAR ORBITS
    BILLIK, BH
    ROTH, HL
    ASTRONAUTICA ACTA, 1967, 13 (01): : 23 - &
  • [42] Unitary groups as stabilizers of orbits
    Erik Friese
    Archiv der Mathematik, 2017, 109 : 101 - 103
  • [43] Virasoro orbits, AdS3 quantum gravity and entropy
    Navarro-Salas, J
    Navarro, P
    JOURNAL OF HIGH ENERGY PHYSICS, 1999, (05):
  • [44] Unitary groups as stabilizers of orbits
    Friese, Erik
    ARCHIV DER MATHEMATIK, 2017, 109 (02) : 101 - 103
  • [45] A lower bound on the fidelity between two states in terms of their trace-distance and max-relative entropy
    Zhang, Lin
    Bu, Kaifeng
    Wu, Junde
    LINEAR & MULTILINEAR ALGEBRA, 2016, 64 (05): : 801 - 806
  • [46] Superactivation of quantum channels is limited by the quantum relative entropy function
    L. Gyongyosi
    S. Imre
    Quantum Information Processing, 2013, 12 : 1011 - 1021
  • [47] Versatile relative entropy bounds for quantum networks
    Rigovacca, Luca
    Kato, Go
    Bauml, Stefan
    Kim, M. S.
    Munro, W. J.
    Azuma, Koji
    NEW JOURNAL OF PHYSICS, 2018, 20
  • [48] A Strengthened Monotonicity Inequality of Quantum Relative Entropy: A Unifying Approach Via Renyi Relative Entropy
    Zhang, Lin
    LETTERS IN MATHEMATICAL PHYSICS, 2016, 106 (04) : 557 - 573
  • [49] A Property of Quantum Relative Entropy with an Application to Privacy in Quantum Communication
    Jain, Rahul
    Radhakrishnan, Jaikumar
    Sen, Pranab
    JOURNAL OF THE ACM, 2009, 56 (06)
  • [50] Maximum relative entropy of coherence for quantum channels
    Zhi-Xiang Jin
    Long-Mei Yang
    Shao-Ming Fei
    Xianqing Li-Jost
    Zhi-Xi Wang
    Gui-Lu Long
    Cong-Feng Qiao
    Science China Physics, Mechanics & Astronomy, 2021, 64