Quantum fidelity and relative entropy between unitary orbits

被引:19
|
作者
Zhang, Lin [1 ]
Fei, Shao-Ming [2 ,3 ]
机构
[1] Hangzhou Dianzi Univ, Inst Math, Hangzhou 310018, Peoples R China
[2] Capital Normal Univ, Sch Math Sci, Beijing 100048, Peoples R China
[3] Max Planck Inst Math Sci, D-04103 Leipzig, Germany
关键词
quantum fidelity; relative entropy; bi-stochastic matrix; operator monotone function; COMPUTATION;
D O I
10.1088/1751-8113/47/5/055301
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Fidelity and relative entropy are two significant quantities in quantum information theory. We study the quantum fidelity and relative entropy under unitary orbits. The maximal and minimal quantum fidelity and relative entropy between two unitary orbits are explicitly derived. The potential applications in quantum computation and information processing are discussed.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Quantum relative entropy uncertainty relation
    Salazar, Domingos S. P.
    PHYSICAL REVIEW E, 2024, 109 (01)
  • [32] Machine learning with quantum relative entropy
    Tsuda, Koji
    INTERNATIONAL WORKSHOP ON STATISTICAL-MECHANICAL INFORMATICS 2008 (IW-SMI 2008), 2009, 143
  • [33] Chain Rule for the Quantum Relative Entropy
    Fang, Kun
    Fawzi, Omar
    Renner, Renato
    Sutter, David
    PHYSICAL REVIEW LETTERS, 2020, 124 (10)
  • [34] On the limit relation for the quantum relative entropy
    Bernad, J. Z.
    Frigyik, A. B.
    JOURNAL OF MATHEMATICAL PHYSICS, 2017, 58 (06)
  • [35] Efficient optimization of the quantum relative entropy
    Fawzi, Hamza
    Fawzi, Omar
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2018, 51 (15)
  • [36] ON DISTANCES BETWEEN UNITARY ORBITS OF SELF-ADJOINT OPERATORS
    AZOFF, EA
    DAVIS, C
    ACTA SCIENTIARUM MATHEMATICARUM, 1984, 47 (3-4): : 419 - 439
  • [37] Optimization of some types of Renyi divergences between unitary orbits
    Trinh Le, Cong
    Khoi Vu, The
    Toan Ho, Minh
    Hoa Dinh, Trung
    LINEAR & MULTILINEAR ALGEBRA, 2025, 73 (03): : 536 - 546
  • [39] Fidelity-disturbance-entropy tradeoff in quantum channels
    Sun, Yuan
    Li, Nan
    Luo, Shunlong
    PHYSICAL REVIEW A, 2022, 105 (06)
  • [40] A von Neumann entropy condition of unitary equivalence of quantum states
    He, Kan
    Hou, Jinchuan
    Li, Ming
    APPLIED MATHEMATICS LETTERS, 2012, 25 (08) : 1153 - 1156