Quantum fidelity and relative entropy between unitary orbits

被引:19
|
作者
Zhang, Lin [1 ]
Fei, Shao-Ming [2 ,3 ]
机构
[1] Hangzhou Dianzi Univ, Inst Math, Hangzhou 310018, Peoples R China
[2] Capital Normal Univ, Sch Math Sci, Beijing 100048, Peoples R China
[3] Max Planck Inst Math Sci, D-04103 Leipzig, Germany
关键词
quantum fidelity; relative entropy; bi-stochastic matrix; operator monotone function; COMPUTATION;
D O I
10.1088/1751-8113/47/5/055301
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Fidelity and relative entropy are two significant quantities in quantum information theory. We study the quantum fidelity and relative entropy under unitary orbits. The maximal and minimal quantum fidelity and relative entropy between two unitary orbits are explicitly derived. The potential applications in quantum computation and information processing are discussed.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Discriminating quantum channels with relative entropy
    Qin, Tao
    Zhao, Meisheng
    Zhang, Yongde
    MODERN PHYSICS LETTERS B, 2008, 22 (05): : 313 - 322
  • [22] MONOTONICITY OF QUANTUM RELATIVE ENTROPY AND RECOVERABILITY
    Berta, Mario
    Lemm, Marius
    Wilde, Mark M.
    QUANTUM INFORMATION & COMPUTATION, 2015, 15 (15-16) : 1333 - 1354
  • [23] An Ergodic Theorem for the Quantum Relative Entropy
    Igor Bjelaković
    Rainer Siegmund-Schultze
    Communications in Mathematical Physics, 2004, 247 : 697 - 712
  • [24] Tripartite entanglement and quantum relative entropy
    Galvao, EF
    Plenio, MB
    Virmani, S
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2000, 33 (48): : 8809 - 8818
  • [25] Monotonicity of quantum relative entropy and recoverability
    Berta, Mario
    Lemm, Marius
    Wilde, Mark M.
    Quantum Information and Computation, 2015, 15 (15-16): : 1333 - 1354
  • [26] Monotonicity of quantum relative entropy revisited
    Petz, D
    REVIEWS IN MATHEMATICAL PHYSICS, 2003, 15 (01) : 79 - 91
  • [27] Quantum Relative Entropy of Tagging and Thermodynamics
    Diazdelacruz, Jose
    ENTROPY, 2020, 22 (02)
  • [28] An ergodic theorem for the quantum relative entropy
    Bjelakovic, I
    Siegmund-Schultze, R
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2004, 247 (03) : 697 - 712
  • [29] On quantum quasi-relative entropy
    Vershynina, Anna
    REVIEWS IN MATHEMATICAL PHYSICS, 2019, 31 (07)
  • [30] Continuity bounds on the quantum relative entropy
    Audenaert, KMR
    Eisert, J
    JOURNAL OF MATHEMATICAL PHYSICS, 2005, 46 (10)