Quantum fidelity and relative entropy between unitary orbits

被引:19
|
作者
Zhang, Lin [1 ]
Fei, Shao-Ming [2 ,3 ]
机构
[1] Hangzhou Dianzi Univ, Inst Math, Hangzhou 310018, Peoples R China
[2] Capital Normal Univ, Sch Math Sci, Beijing 100048, Peoples R China
[3] Max Planck Inst Math Sci, D-04103 Leipzig, Germany
关键词
quantum fidelity; relative entropy; bi-stochastic matrix; operator monotone function; COMPUTATION;
D O I
10.1088/1751-8113/47/5/055301
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Fidelity and relative entropy are two significant quantities in quantum information theory. We study the quantum fidelity and relative entropy under unitary orbits. The maximal and minimal quantum fidelity and relative entropy between two unitary orbits are explicitly derived. The potential applications in quantum computation and information processing are discussed.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Quantum α-fidelity of unitary orbits
    Yan, Xiaojing
    Yin, Zhi
    Li, Longsuo
    QUANTUM INFORMATION PROCESSING, 2020, 19 (09)
  • [2] Optimization of quantum divergences between unitary orbits
    The Khoi Vu
    Minh Toan Ho
    Cong Trinh Le
    Trung Hoa Dinh
    Quantum Information Processing, 22
  • [3] Optimization of quantum divergences between unitary orbits
    Vu, The Khoi
    Ho, Minh Toan
    Le, Cong Trinh
    Dinh, Trung Hoa
    QUANTUM INFORMATION PROCESSING, 2023, 22 (08)
  • [4] Relative entropy between quantum ensembles
    Shunlong Luo
    Nan Li
    Xuelian Cao
    Periodica Mathematica Hungarica, 2009, 59 : 223 - 237
  • [5] Relative entropy between quantum ensembles
    Luo, Shunlong
    Li, Nan
    Cao, Xuelian
    PERIODICA MATHEMATICA HUNGARICA, 2009, 59 (02) : 223 - 237
  • [6] Inequality between unitary orbits
    Uchiyama, Mitsuru
    Seto, Michio
    COMPTES RENDUS MATHEMATIQUE, 2013, 351 (7-8) : 285 - 288
  • [7] Quantum mutual information along unitary orbits
    Jevtic, Sania
    Jennings, David
    Rudolph, Terry
    PHYSICAL REVIEW A, 2012, 85 (05):
  • [8] Relative Renyi entropy and fidelity susceptibility
    Nagy, A.
    Romera, E.
    EPL, 2015, 109 (06)
  • [9] ESTIMATING THE DISTANCE BETWEEN UNITARY ORBITS
    DAVIDSON, KR
    JOURNAL OF OPERATOR THEORY, 1988, 20 (01) : 21 - 40
  • [10] Exploring the tradeoff between fidelity and time optimal control of quantum unitary transformations
    Tibbetts, Katharine W. Moore
    Brif, Constantin
    Grace, Matthew D.
    Donovan, Ashley
    Hocker, David L.
    Ho, Tak-San
    Wu, Re-Bing
    Rabitz, Herschel
    PHYSICAL REVIEW A, 2012, 86 (06):