Kardar-Parisi-Zhang equation with spatially correlated noise: A unified picture from nonperturbative renormalization group

被引:34
作者
Kloss, Thomas [1 ]
Canet, Leonie [2 ]
Delamotte, Bertrand [3 ,4 ]
Wschebor, Nicolas [3 ,4 ,5 ]
机构
[1] Univ Fed Rio Grande do Norte, Int Inst Phys, BR-59078400 Natal, RN, Brazil
[2] Univ Grenoble 1, CNRS, UMR 5493, LPMMC, F-38042 Grenoble, France
[3] Univ Paris 06, Sorbonne Univ, UMR 7600, LPTMC, F-75005 Paris, France
[4] CNRS, UMR 7600, LPTMC, F-75005 Paris, France
[5] Univ Republica, Fac Ingn, Inst Fis, Montevideo 11000, Uruguay
来源
PHYSICAL REVIEW E | 2014年 / 89卷 / 02期
关键词
SURFACE GROWTH; UNIVERSAL FLUCTUATIONS; DIRECTED POLYMERS; INTERFACES; EXPONENTS; DYNAMICS; BURGERS; ENERGY;
D O I
10.1103/PhysRevE.89.022108
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We investigate the scaling regimes of the Kardar-Parisi-Zhang (KPZ) equation in the presence of spatially correlated noise with power-law decay D(p) similar to p(-2 rho) in Fourier space, using a nonperturbative renormalization group approach. We determine the full phase diagram of the system as a function of. and the dimension d. In addition to the weak-coupling part of the diagram, which agrees with the results from Europhys. Lett. 47, 14 (1999) and Eur. Phys. J. B 9, 491 (1999), we find the two fixed points describing the short-range- (SR) and long-range- (LR) dominated strong-coupling phases. In contrast with a suggestion in the references cited above, we show that, for all values of rho, there exists a unique strong-coupling SR fixed point that can be continuously followed as a function of d. We show in particular that the existence and the behavior of the LR fixed point do not provide any hint for 4 being the upper critical dimension of the KPZ equation with SR noise.
引用
收藏
页数:11
相关论文
共 70 条
[41]   Numerical evidence for stretched exponential relaxations in the Kardar-Parisi-Zhang equation [J].
Katzav, E ;
Schwartz, M .
PHYSICAL REVIEW E, 2004, 69 (05) :4
[42]   Fixing the fixed-point system-Applying Dynamic Renormalization Group to systems with long-range interactions [J].
Katzav, Eytan .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2013, 392 (08) :1750-1755
[43]   Extremely large-scale simulation of a Kardar-Parisi-Zhang model using graphics cards [J].
Kelling, Jefrrey ;
Odor, Geza .
PHYSICAL REVIEW E, 2011, 84 (06)
[44]   Nonperturbative renormalization group for the stationary Kardar-Parisi-Zhang equation: Scaling functions and amplitude ratios in 1+1, 2+1, and 3+1 dimensions [J].
Kloss, Thomas ;
Canet, Leonie ;
Wschebor, Nicolas .
PHYSICAL REVIEW E, 2012, 86 (05)
[45]  
Kopietz P., 2010, LECT NOTES PHYS
[46]   Origins of scale invariance in growth processes [J].
Krug, J .
ADVANCES IN PHYSICS, 1997, 46 (02) :139-282
[47]   SURFACE GROWTH WITH TEMPORALLY CORRELATED NOISE [J].
LAM, CH ;
SANDER, LM ;
WOLF, DE .
PHYSICAL REVIEW A, 1992, 46 (10) :R6128-R6131
[48]   HIDDEN SYMMETRY, EXACT RELATIONS, AND A SMALL-PARAMETER IN THE KARDAR-PARISI-ZHANG PROBLEM WITH STRONG-COUPLING [J].
LEBEDEV, VV ;
LVOV, VS .
PHYSICAL REVIEW E, 1994, 49 (02) :R959-R962
[49]   Surface growth with spatially correlated noise [J].
Li, MS .
PHYSICAL REVIEW E, 1997, 55 (01) :1178-1180
[50]   Critical exponents of the KPZ equation via multi-surface coding numerical simulations [J].
Marinari, E ;
Pagnani, A ;
Parisi, G .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2000, 33 (46) :8181-8192