Kardar-Parisi-Zhang equation with spatially correlated noise: A unified picture from nonperturbative renormalization group

被引:34
作者
Kloss, Thomas [1 ]
Canet, Leonie [2 ]
Delamotte, Bertrand [3 ,4 ]
Wschebor, Nicolas [3 ,4 ,5 ]
机构
[1] Univ Fed Rio Grande do Norte, Int Inst Phys, BR-59078400 Natal, RN, Brazil
[2] Univ Grenoble 1, CNRS, UMR 5493, LPMMC, F-38042 Grenoble, France
[3] Univ Paris 06, Sorbonne Univ, UMR 7600, LPTMC, F-75005 Paris, France
[4] CNRS, UMR 7600, LPTMC, F-75005 Paris, France
[5] Univ Republica, Fac Ingn, Inst Fis, Montevideo 11000, Uruguay
来源
PHYSICAL REVIEW E | 2014年 / 89卷 / 02期
关键词
SURFACE GROWTH; UNIVERSAL FLUCTUATIONS; DIRECTED POLYMERS; INTERFACES; EXPONENTS; DYNAMICS; BURGERS; ENERGY;
D O I
10.1103/PhysRevE.89.022108
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We investigate the scaling regimes of the Kardar-Parisi-Zhang (KPZ) equation in the presence of spatially correlated noise with power-law decay D(p) similar to p(-2 rho) in Fourier space, using a nonperturbative renormalization group approach. We determine the full phase diagram of the system as a function of. and the dimension d. In addition to the weak-coupling part of the diagram, which agrees with the results from Europhys. Lett. 47, 14 (1999) and Eur. Phys. J. B 9, 491 (1999), we find the two fixed points describing the short-range- (SR) and long-range- (LR) dominated strong-coupling phases. In contrast with a suggestion in the references cited above, we show that, for all values of rho, there exists a unique strong-coupling SR fixed point that can be continuously followed as a function of d. We show in particular that the existence and the behavior of the LR fixed point do not provide any hint for 4 being the upper critical dimension of the KPZ equation with SR noise.
引用
收藏
页数:11
相关论文
共 70 条
[1]   SCALING EXPONENTS FOR KINETIC ROUGHENING IN HIGHER DIMENSIONS [J].
ALANISSILA, T ;
HJELT, T ;
KOSTERLITZ, JM ;
VENALAINEN, O .
JOURNAL OF STATISTICAL PHYSICS, 1993, 72 (1-2) :207-225
[2]   SURFACE GROWTH WITH LONG-RANGE CORRELATED NOISE [J].
AMAR, JG ;
LAM, PM ;
FAMILY, F .
PHYSICAL REVIEW A, 1991, 43 (08) :4548-4550
[3]   Probability Distribution of the Free Energy of the Continuum Directed Random Polymer in 1+1 Dimensions [J].
Amir, Gideon ;
Corwin, Ivan ;
Quastel, Jeremy .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2011, 64 (04) :466-537
[4]  
[Anonymous], 1995, FRACTAL CONCEPT SURF, DOI DOI 10.1017/CBO9780511599798
[5]   Nonperturbative renormalization group preserving full-momentum dependence: Implementation and quantitative evaluation [J].
Benitez, F. ;
Blaizot, J. -P. ;
Chate, H. ;
Delamotte, B. ;
Mendez-Galain, R. ;
Wschebor, N. .
PHYSICAL REVIEW E, 2012, 85 (02)
[6]   Solutions of renormalization-group flow equations with full momentum dependence [J].
Benitez, F. ;
Blaizot, J. -P. ;
Chate, H. ;
Delamotte, B. ;
Mendez-Galain, R. ;
Wschebor, N. .
PHYSICAL REVIEW E, 2009, 80 (03)
[7]   Branching-rate expansion around annihilating random walks [J].
Benitez, Federico ;
Wschebor, Nicolas .
PHYSICAL REVIEW E, 2012, 86 (01)
[8]   Non-perturbative renormalization flow in quantum field theory and statistical physics [J].
Berges, J ;
Tetradis, N ;
Wetterich, C .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2002, 363 (4-6) :223-386
[9]   Introduction to the nonequilibrium functional renormalization group [J].
Berges, J. ;
Mesterhazy, D. .
NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS, 2012, 228 :37-60
[10]   Upper critical dimension of the Kardar-Parisi-Zhang equation [J].
Bhattacharjee, JK .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1998, 31 (05) :L93-L96