Nonlinear Dynamics and Quantum Entanglement in Optomechanical Systems

被引:109
|
作者
Wang, Guanglei [1 ]
Huang, Liang [1 ,2 ,3 ]
Lai, Ying-Cheng [1 ,4 ]
Grebogi, Celso [4 ]
机构
[1] Arizona State Univ, Sch Elect Comp & Energy Engn, Tempe, AZ 85287 USA
[2] Lanzhou Univ, Sch Phys Sci & Technol, Lanzhou 730000, Gansu, Peoples R China
[3] Lanzhou Univ, Key Lab Magnetism & Magnet Mat MOE, Lanzhou 730000, Gansu, Peoples R China
[4] Univ Aberdeen, Inst Complex Syst & Math Biol, Kings Coll, Aberdeen AB24 3UE, Scotland
关键词
CAVITY OPTOMECHANICS; MICROWAVE FIELDS; OSCILLATOR; MOTION; MOLECULES; STATE; LIMIT;
D O I
10.1103/PhysRevLett.112.110406
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
To search for and exploit quantum manifestations of classical nonlinear dynamics is one of the most fundamental problems in physics. Using optomechanical systems as a paradigm, we address this problem from the perspective of quantum entanglement. We uncover strong fingerprints in the quantum entanglement of two common types of classical nonlinear dynamical behaviors: periodic oscillations and quasiperiodic motion. There is a transition from the former to the latter as an experimentally adjustable parameter is changed through a critical value. Accompanying this process, except for a small region about the critical value, the degree of quantum entanglement shows a trend of continuous increase. The time evolution of the entanglement measure, e. g., logarithmic negativity, exhibits a strong dependence on the nature of classical nonlinear dynamics, constituting its signature.
引用
收藏
页数:6
相关论文
共 50 条
  • [41] Entanglement dynamics in quantum many-body systems
    Ho, Wen Wei
    Abanin, Dmitry A.
    PHYSICAL REVIEW B, 2017, 95 (09)
  • [42] Dynamics and Entanglement in Quantum and Quantum-Classical Systems: Lessons for Gravity
    Husain, Viqar
    Javed, Irfan
    Singh, Suprit
    PHYSICAL REVIEW LETTERS, 2022, 129 (11)
  • [43] Optomechanical systems and quantum computing
    Tsukanov A.V.
    Russian Microelectronics, 2011, 40 (5) : 333 - 342
  • [44] Nonlinear dynamics of open quantum systems
    Samarin, A. Yu.
    VESTNIK SAMARSKOGO GOSUDARSTVENNOGO TEKHNICHESKOGO UNIVERSITETA-SERIYA-FIZIKO-MATEMATICHESKIYE NAUKI, 2018, 22 (02): : 214 - 224
  • [45] Quantum Control of Optomechanical Systems
    Hofer, Sebastian G.
    Hammerer, Klemens
    ADVANCES IN ATOMIC, MOLECULAR, AND OPTICAL PHYSICS, VOL 66, 2017, 66 : 263 - 374
  • [46] Quantum Effects in Optomechanical Systems
    Genes, C.
    Mari, A.
    Vitali, D.
    Tombesi, P.
    ADVANCES IN ATOMIC, MOLECULAR, AND OPTICAL PHYSICS, VOL 57, 2009, 57 : 33 - 86
  • [47] Dynamics of quantum entanglement
    Zyczkowski, K
    Horodecki, P
    Horodecki, M
    Horodecki, R
    PHYSICAL REVIEW A, 2002, 65 (01): : 121011 - 121019
  • [48] Nonlinear dynamics and chaos in an optomechanical beam
    Navarro-Urrios, Daniel
    Capuj, Nestor E.
    Colombano, Martin F.
    Garcia, P. David
    Sledzinska, Marianna
    Alzina, Francesc
    Griol, Amadeu
    Martinez, Alejandro
    Sotomayor-Torres, Clivia M.
    NATURE COMMUNICATIONS, 2017, 8
  • [49] Nonlinear dynamics and chaos in an optomechanical beam
    Daniel Navarro-Urrios
    Néstor E. Capuj
    Martín F. Colombano
    P. David García
    Marianna Sledzinska
    Francesc Alzina
    Amadeu Griol
    Alejandro Martínez
    Clivia M. Sotomayor-Torres
    Nature Communications, 8
  • [50] Simultaneous control of quantum phase synchronization and entanglement dynamics in a gain-loss optomechanical cavity system
    Ghosh, Joy
    Mondal, Souvik
    Varshney, Shailendra K.
    Debnath, Kapil
    PHYSICAL REVIEW A, 2024, 109 (02)