Testing genuine tripartite quantum nonlocality with three two-level atoms in a driven cavity

被引:3
作者
Yuan, H. [1 ,2 ]
Wei, L. F. [1 ,3 ]
机构
[1] Southwest Jiaotong Univ, Sch Phys Sci & Technol, Quantum Optoelect Lab, Chengdu 610031, Peoples R China
[2] Chinese Acad Sci, Univ Sci & Technol China, Key Lab Quantum Informat, Hefei 230026, Peoples R China
[3] Sun Yat Sen Univ, Sch Phys & Engn, State Key Lab Optoelect Mat & Technol, Guangzhou 510275, Guangdong, Peoples R China
来源
PHYSICAL REVIEW A | 2013年 / 88卷 / 04期
关键词
BELLS-INEQUALITY; JOINT MEASUREMENTS; VIOLATION; STATES; ENTANGLEMENT; GENERATION;
D O I
10.1103/PhysRevA.88.042104
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
It is known that the violation of Svetlichny's inequality (SI), rather than the usual Mermin's inequality (MI), is a robust criterion to confirm the existence of genuine multipartite quantum nonlocality. In this paper, we propose a feasible approach to test SI with three two-level atoms (TLAs) dispersively coupled to a driven cavity. The proposal is based on the joint measurements of the states of three TLAs by probing the steady-state transmission spectra of the driven cavity: each peak marks one of the computational basis states and its relative height corresponds to the probability superposed in the detected three-TLA state. With these kinds of joint measurements, the correlation functions in SI can be directly calculated, and thus the SI can be efficiently tested for typical tripartite entanglement, i.e., genuine tripartite entanglement [e.g., Greenberger-Horne-Zeilinger (GHZ) and W states] and biseparable three-qubit entangled states (e.g., vertical bar chi >(12)vertical bar xi >(3)). Our numerical experiments show that the SI is violated only by three-qubit GHZ and W states, not by biseparable three-qubit entangled state vertical bar chi >(12)vertical bar xi >(3), while the MI can still be violated by biseparable three-qubit entangled states. Thus the violation of SI can be regarded as a robust criterion for the existence of genuine tripartite entanglement.
引用
收藏
页数:8
相关论文
共 49 条
[1]   Grothendieck's constant and local models for noisy entangled quantum states [J].
Acin, Antonio ;
Gisin, Nicolas ;
Toner, Benjamin .
PHYSICAL REVIEW A, 2006, 73 (06)
[2]   Greenberger-Horne-Zeilinger generation protocol for N superconducting transmon qubits capacitively coupled to a quantum bus [J].
Aldana, Samuel ;
Wang, Ying-Dan ;
Bruder, C. .
PHYSICAL REVIEW B, 2011, 84 (13)
[3]  
[Anonymous], 1989, Bell's Theorem, Quantum Theory, and Conceptions of the Universe
[4]   Violation of Bell's inequality in Josephson phase qubits [J].
Ansmann, Markus ;
Wang, H. ;
Bialczak, Radoslaw C. ;
Hofheinz, Max ;
Lucero, Erik ;
Neeley, M. ;
O'Connell, A. D. ;
Sank, D. ;
Weides, M. ;
Wenner, J. ;
Cleland, A. N. ;
Martinis, John M. .
NATURE, 2009, 461 (7263) :504-506
[5]   EXPERIMENTAL TEST OF BELL INEQUALITIES USING TIME-VARYING ANALYZERS [J].
ASPECT, A ;
DALIBARD, J ;
ROGER, G .
PHYSICAL REVIEW LETTERS, 1982, 49 (25) :1804-1807
[6]   Definitions of multipartite nonlocality [J].
Bancal, Jean-Daniel ;
Barrett, Jonathan ;
Gisin, Nicolas ;
Pironio, Stefano .
PHYSICAL REVIEW A, 2013, 88 (01)
[7]  
Bell J. S., 1964, Physics, V1, P195, DOI [10.1103/physicsphysiquefizika.1.195, DOI 10.1103/PHYSICSPHYSIQUEFIZIKA.1.195, 10.1103/Physics-PhysiqueFizika.1.195]
[8]   Proposal for generating and detecting multi-qubit GHZ states in circuit QED [J].
Bishop, Lev S. ;
Tornberg, L. ;
Price, D. ;
Ginossar, E. ;
Nunnenkamp, A. ;
Houck, A. A. ;
Gambetta, J. M. ;
Koch, Jens ;
Johansson, G. ;
Girvin, S. M. ;
Schoelkopf, R. J. .
NEW JOURNAL OF PHYSICS, 2009, 11
[9]   Cavity quantum electrodynamics for superconducting electrical circuits: An architecture for quantum computation [J].
Blais, A ;
Huang, RS ;
Wallraff, A ;
Girvin, SM ;
Schoelkopf, RJ .
PHYSICAL REVIEW A, 2004, 69 (06) :062320-1
[10]   Quantum-information processing with circuit quantum electrodynamics [J].
Blais, Alexandre ;
Gambetta, Jay ;
Wallraff, A. ;
Schuster, D. I. ;
Girvin, S. M. ;
Devoret, M. H. ;
Schoelkopf, R. J. .
PHYSICAL REVIEW A, 2007, 75 (03)