Quenched invariance principles for walks on clusters of percolation or among random conductances

被引:123
|
作者
Sidoravicius, V
Sznitman, AS
机构
[1] IMPA, BR-22460320 Rio De Janeiro, Brazil
[2] ETH Zentrum, Dept Math, CH-8092 Zurich, Switzerland
关键词
D O I
10.1007/s00440-004-0336-0
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this work we principally study random walk on the supercritical infinite cluster for bond percolation on Z(d). We prove a quenched functional central limit theorem for the walk when dgreater than or equal to4. We also prove a similar result for random walk among i.i.d. random conductances along nearest neighbor edges of Z(d), when dgreater than or equal to1.
引用
收藏
页码:219 / 244
页数:26
相关论文
共 50 条
  • [1] Quenched invariance principles for walks on clusters of percolation or among random conductances
    Vladas Sidoravicius
    Alain-Sol Sznitman
    Probability Theory and Related Fields, 2004, 129 : 219 - 244
  • [2] Quenched invariance principles for random walks on percolation clusters
    Mathieu, P.
    Piatnitski, A.
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2007, 463 (2085): : 2287 - 2307
  • [3] Quenched Invariance Principles for Random Walks with Random Conductances
    P. Mathieu
    Journal of Statistical Physics, 2008, 130 : 1025 - 1046
  • [4] Quenched invariance principles for random walks with random conductances
    Mathieu, P.
    JOURNAL OF STATISTICAL PHYSICS, 2008, 130 (05) : 1025 - 1046
  • [5] QUENCHED INVARIANCE PRINCIPLE FOR RANDOM WALKS AMONG RANDOM DEGENERATE CONDUCTANCES
    Bella, Peter
    Schaffner, Mathias
    ANNALS OF PROBABILITY, 2020, 48 (01): : 296 - 316
  • [6] A Conditional Quenched CLT for Random Walks Among Random Conductances on Zd
    Gallesco, C.
    Gantert, N.
    Popov, S.
    Vachkovskaia, M.
    MARKOV PROCESSES AND RELATED FIELDS, 2014, 20 (02) : 287 - 328
  • [7] Quenched invariance principle for simple random walk on percolation clusters
    Noam Berger
    Marek Biskup
    Probability Theory and Related Fields, 2007, 137 : 83 - 120
  • [8] Quenched invariance principle for simple random walk on percolation clusters
    Berger, Noam
    Biskup, Marek
    PROBABILITY THEORY AND RELATED FIELDS, 2007, 137 (1-2) : 83 - 120
  • [9] QUENCHED INVARIANCE PRINCIPLES FOR RANDOM WALKS AND ELLIPTIC DIFFUSIONS IN RANDOM MEDIA WITH BOUNDARY
    Chen, Zhen-Qing
    Croydon, David A.
    Kumagai, Takashi
    ANNALS OF PROBABILITY, 2015, 43 (04): : 1594 - 1642
  • [10] Random walks with unbounded jumps among random conductances II: Conditional quenched CLT
    Gallesco, Christophe
    Popov, Serguei
    ALEA-LATIN AMERICAN JOURNAL OF PROBABILITY AND MATHEMATICAL STATISTICS, 2013, 10 (01): : 253 - +