High-throughput determination of structural phase diagram and constituent phases using GRENDEL

被引:61
作者
Kusne, A. G. [1 ]
Keller, D. [2 ]
Anderson, A. [2 ]
Zaban, A. [2 ]
Takeuchi, I. [3 ]
机构
[1] Natl Inst Stand & Technol, Mat Measurement Sci Div, Gaithersburg, MD 20899 USA
[2] Bar Ilan Univ, Dept Chem, Ctr Nanotechnol & Adv Mat, IL-5290002 Ramat Gan, Israel
[3] Univ Maryland, Dept Mat Sci & Engn, College Pk, MD 20742 USA
关键词
materials informatics; phase diagram; high throughput materials science; ENERGY MINIMIZATION; SEARCH; TOOL;
D O I
10.1088/0957-4484/26/44/444002
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Advances in high-throughput materials fabrication and characterization techniques have resulted in faster rates of data collection and rapidly growing volumes of experimental data. To convert this mass of information into actionable knowledge of material process-structure-property relationships requires high-throughput data analysis techniques. This work explores the use of the Graph-based endmember extraction and labeling (GRENDEL) algorithm as a high-throughput method for analyzing structural data from combinatorial libraries, specifically, to determine phase diagrams and constituent phases from both x-ray diffraction and Raman spectral data. The GRENDEL algorithm utilizes a set of physical constraints to optimize results and provides a framework by which additional physics-based constraints can be easily incorporated. GRENDEL also permits the integration of database data as shown by the use of critically evaluated data from the Inorganic Crystal Structure Database in the x-ray diffraction data analysis. Also the Sunburst radial tree map is demonstrated as a tool to visualize material structure-property relationships found through graph based analysis.
引用
收藏
页数:9
相关论文
共 24 条
[1]   Atomic-scale evolution of modulated phases at the ferroelectric-antiferroelectric morphotropic phase boundary controlled by flexoelectric interaction [J].
Borisevich, A. Y. ;
Eliseev, E. A. ;
Morozovska, A. N. ;
Cheng, C. -J. ;
Lin, J. -Y. ;
Chu, Y. H. ;
Kan, D. ;
Takeuchi, I. ;
Nagarajan, V. ;
Kalinin, S. V. .
NATURE COMMUNICATIONS, 2012, 3
[2]   Fast approximate energy minimization via graph cuts [J].
Boykov, Y ;
Veksler, O ;
Zabih, R .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2001, 23 (11) :1222-1239
[3]   An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision [J].
Boykov, Y ;
Kolmogorov, V .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2004, 26 (09) :1124-1137
[4]  
Bras R Le, 2013, P 23 INT JOINT C ART, V13
[5]   Structural transitions and complex domain structures across a ferroelectric-to-antiferroelectric phase boundary in epitaxial Sm-doped BiFeO3 thin films [J].
Cheng, C. -J. ;
Kan, D. ;
Lim, S. -H. ;
McKenzie, W. R. ;
Munroe, P. R. ;
Salamanca-Riba, L. G. ;
Withers, R. L. ;
Takeuchi, I. ;
Nagarajan, V. .
PHYSICAL REVIEW B, 2009, 80 (01)
[6]  
Curtarolo S, 2013, NAT MAT, V12
[7]  
Hastie T, 2009, ELEMENTS STAT LEARNI, V2
[8]   Commentary: The Materials Project: A materials genome approach to accelerating materials innovation [J].
Jain, Anubhav ;
Shyue Ping Ong ;
Hautier, Geoffroy ;
Chen, Wei ;
Richards, William Davidson ;
Dacek, Stephen ;
Cholia, Shreyas ;
Gunter, Dan ;
Skinner, David ;
Ceder, Gerbrand ;
Persson, Kristin A. .
APL MATERIALS, 2013, 1 (01)
[9]  
Kan D, 2012, J MATER RES, V1, P1
[10]   Utilizing Pulsed Laser Deposition Lateral lnhomogeneity as a Tool in Combinatorial Material Science [J].
Keller, David A. ;
Ginsburg, Adam ;
Barad, Hannah-Noa ;
Shirnanovich, Klimentiy ;
Bouhadana, Yaniv ;
Rosh-Hodesh, Eli ;
Takeuchi, Ichiro ;
Aviv, Hagit ;
Tischler, Yaakov R. ;
Anderson, Assaf Y. ;
Zaban, Arie .
ACS COMBINATORIAL SCIENCE, 2015, 17 (04) :209-216