LKAU-Net: 3D Large-Kernel Attention-Based U-Net for Automatic MRI Brain Tumor Segmentation

被引:29
作者
Li, Hao [1 ,2 ]
Nan, Yang [1 ]
Yang, Guang [1 ,3 ]
机构
[1] Imperial Coll London, Fac Med, Natl Heart & Lung Inst, London, England
[2] Imperial Coll London, Fac Med, Dept Bioengn, London, England
[3] Royal Brompton Hosp, London, England
来源
MEDICAL IMAGE UNDERSTANDING AND ANALYSIS, MIUA 2022 | 2022年 / 13413卷
关键词
Brain tumor segmentation; Attention; Deep learning; MRI;
D O I
10.1007/978-3-031-12053-4_24
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Automatic segmentation of brain tumors from multi-modal magnetic resonance images (MRI) using deep learning methods has emerged in assisting the diagnosis and treatment of brain tumors. However, the diversity in location, shape, and appearance of brain tumors and the dominance of background voxels in MRI images make accurate brain tumor segmentation difficult. In this paper, a novel 3D large-kernel attention-based U-Net (LKAU-Net) is proposed to address these problems for accurate brain tumor segmentation. Advantages of convolution and self-attention are combined in the proposed 3D large-kernel (LK) attention module, including local contextual information, long-range dependence, and channel adaptability simultaneously. The network was trained and evaluated on the multi-modal Brain Tumor Segmentation Challenge (BraTS) 2020 dataset. The effectiveness of the proposed 3D LK attention module has been proved by both five-fold cross-validation and official online evaluation from the organizers. The results show that our LKAU-Net outperformed state-of-the-art performance in delineating all three tumor sub-regions, with average Dice scores of 79.01%, 91.31%, and 85.75%, as well as 95% Hausdorff distances of 26.27, 4.56, and 5.87 for the enhancing tumor, whole tumor, and tumor core, respectively.
引用
收藏
页码:313 / 327
页数:15
相关论文
共 30 条
[1]  
Bakas S, 2019, Arxiv, DOI arXiv:1811.02629
[2]   Data Descriptor: Advancing The Cancer Genome Atlas glioma MRI collections with expert segmentation labels and radiomic features [J].
Bakas, Spyridon ;
Akbari, Hamed ;
Sotiras, Aristeidis ;
Bilello, Michel ;
Rozycki, Martin ;
Kirby, Justin S. ;
Freymann, John B. ;
Farahani, Keyvan ;
Davatzikos, Christos .
SCIENTIFIC DATA, 2017, 4
[3]  
Chen J., 2021, arXiv, DOI 10.48550/arXiv:2102.04306
[4]   MRI Tumor Segmentation with Densely Connected 3D CNN [J].
Chen, Lele ;
Wu, Yue ;
DSouza, Adora M. ;
Abidin, Anas Z. ;
Wismueller, Axel ;
Xu, Chenliang .
MEDICAL IMAGING 2018: IMAGE PROCESSING, 2018, 10574
[5]   3D AGSE-VNet: an automatic brain tumor MRI data segmentation framework [J].
Guan, Xi ;
Yang, Guang ;
Ye, Jianming ;
Yang, Weiji ;
Xu, Xiaomei ;
Jiang, Weiwei ;
Lai, Xiaobo .
BMC MEDICAL IMAGING, 2022, 22 (01)
[6]  
Guo MH, 2022, Arxiv, DOI arXiv:2202.09741
[7]   Attention mechanisms in computer vision: A survey [J].
Guo, Meng-Hao ;
Xu, Tian-Xing ;
Liu, Jiang-Jiang ;
Liu, Zheng-Ning ;
Jiang, Peng-Tao ;
Mu, Tai-Jiang ;
Zhang, Song-Hai ;
Martin, Ralph R. ;
Cheng, Ming-Ming ;
Hu, Shi-Min .
COMPUTATIONAL VISUAL MEDIA, 2022, 8 (03) :331-368
[8]  
Hu J, 2018, ADV NEUR IN, V31
[9]   A Deep Multi-Task Learning Framework for Brain Tumor Segmentation [J].
Huang, He ;
Yang, Guang ;
Zhang, Wenbo ;
Xu, Xiaomei ;
Yang, Weiji ;
Jiang, Weiwei ;
Lai, Xiaobo .
FRONTIERS IN ONCOLOGY, 2021, 11
[10]   nnU-Net for Brain Tumor Segmentation [J].
Isensee, Fabian ;
Jaeger, Paul F. ;
Full, Peter M. ;
Vollmuth, Philipp ;
Maier-Hein, Klaus H. .
BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES (BRAINLES 2020), PT II, 2021, 12659 :118-132