Lithiophilic polymer interphase anchored on laser-punched 3D holey Cu matrix enables uniform lithium nucleation leading to super-stable lithium metal anodes

被引:85
作者
Jiang, Jiangmin [1 ,2 ]
Pan, Zhenghui [2 ]
Kou, Zongkui [2 ]
Nie, Ping [3 ]
Chen, Chenglong [4 ]
Li, Zhiwei [1 ]
Li, Shaopeng [1 ]
Zhu, Qi [1 ]
Dou, Hui [1 ]
Zhang, Xiaogang [1 ]
Wang, John [2 ]
机构
[1] Nanjing Univ Aeronaut & Astronaut, Jiangsu Key Lab Electrochem Energy Storage Techno, Coll Mat Sci & Engn, Nanjing 210016, Peoples R China
[2] Natl Univ Singapore, Dept Mat Sci & Engn, Singapore 117574, Singapore
[3] Jilin Normal Univ, Coll Chem, Key Lab Preparat & Applicat Environm Friendly Mat, Siping 136000, Peoples R China
[4] Nanjing Univ Sci & Technol, Coll Chem Engn, Nanjing 210094, Peoples R China
基金
中国国家自然科学基金;
关键词
Lithium metal anodes; Laser machining technology; Lithiophilic polymer interphase; Molecular dynamics simulations; In-situ monitoring studies; HIGH-CAPACITY; HIGH-ENERGY; CURRENT COLLECTOR; NANOWIRE NETWORK; BATTERIES; ION; CHALLENGES; ELECTRODE; LIFE; CELL;
D O I
10.1016/j.ensm.2020.04.006
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Metallic lithium is regarded as the "Holy Grail" among various anode materials for the next-generation rechargeable batteries. Unfortunately, the inhomogeneous Li deposition and uncontrolled dendrite growth during repeated cycling lead to low Coulombic efficiency, poor performance, and serious safety issues. Herein, a novel two-pronged strategy is proposed to effectively guide Li nucleation and suppress the unwanted Li dendrites growth, by a synergized approach of combining the laser-machined 3D holey Cu matrix (3D Cu) and lithiophilic polydopamine (PDA) surface coating layer. The PDA@3D Cu scaffold is shown to exhibit the wanted dendrite-free Li plating/stripping behavior. It delivers a remarkable Coulombic efficiency of 96.4% after 150 cycles (2.0 mA cm(-2) at 1.0 mAh cm(-2)), and achieves an excellent lifespan of over 1000 h operation tested in Li/Li symmetric cells, together with good stability for Li//FePO4 full batteries. Our molecular dynamics (MD) simulations, density functional theory (DFT) calculations, and in-situ real-time monitoring using optical microscopy together have established the direct correlation between reversible Li electrodeposition and lithiophilic 3D holey structure scaffold. Significantly, the new findings suggest that a synergistic combination of 3D Cu with lithiophilic PDA coating layer represents an effective pathway to regulate metallic Li anodes towards practical applications.
引用
收藏
页码:84 / 91
页数:8
相关论文
共 72 条
[51]   A Chemically Engineered Porous Copper Matrix with Cylindrical Core-Shell Skeleton as a Stable Host for Metallic Sodium Anodes [J].
Wang, Chuanlong ;
Wang, Huan ;
Matios, Edward ;
Hu, Xiaofei ;
Li, Weiyang .
ADVANCED FUNCTIONAL MATERIALS, 2018, 28 (30)
[52]   Self-Stabilized and Strongly Adhesive Supramolecular Polymer Protective Layer Enables Ultrahigh-Rate and Large-Capacity Lithium-Metal Anode [J].
Wang, Gang ;
Chen, Chao ;
Chen, Yunhua ;
Kang, Xiongwu ;
Yang, Chenghao ;
Wang, Fei ;
Liu, Yong ;
Xiong, Xunhui .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2020, 59 (05) :2055-2060
[53]   Stable Li Metal Anodes via Regulating Lithium Plating/Stripping in Vertically Aligned Microchannels [J].
Wang, Shu-Hua ;
Yin, Ya-Xia ;
Zuo, Tong-Tong ;
Dong, Wei ;
Li, Jin-Yi ;
Shi, Ji-Lei ;
Zhang, Chang-Huan ;
Li, Nian-Wu ;
Li, Cong-Ju ;
Guo, Yu-Guo .
ADVANCED MATERIALS, 2017, 29 (40)
[54]   Ultrafast Charging High Capacity Asphalt - Lithium Metal Batteries [J].
Wang, Tuo ;
Salvatierra, Rodrigo Villegas ;
Jalilov, Almaz S. ;
Tian, Jian ;
Tour, James M. .
ACS NANO, 2017, 11 (11) :10761-10767
[55]   Stretchable fiber-shaped lithium metal anode [J].
Wang, Xianshu ;
Pan, Zhenghui ;
Yang, Jie ;
Lyu, Zhiyang ;
Zhong, Yaotang ;
Zhou, Guangmin ;
Qiu, Yongcai ;
Zhang, Yuegang ;
Wang, John ;
Li, Weishan .
ENERGY STORAGE MATERIALS, 2019, 22 :179-184
[56]   A long-life lithium ion oxygen battery based on commercial silicon particles as the anode [J].
Wu, Shichao ;
Zhu, Kai ;
Tang, Jing ;
Liao, Kaiming ;
Bai, Songyan ;
Yi, Jin ;
Yamauchi, Yusuke ;
Ishida, Masayoshi ;
Zhou, Haoshen .
ENERGY & ENVIRONMENTAL SCIENCE, 2016, 9 (10) :3262-3271
[57]   Lithiophilic Cu-CuO-Ni Hybrid Structure: Advanced Current Collectors Toward Stable Lithium Metal Anodes [J].
Wu, Shuilin ;
Zhang, Zhenyu ;
Lan, Minhuan ;
Yang, Shaoran ;
Cheng, Junye ;
Cai, Junjie ;
Shen, Jianhua ;
Zhu, Ying ;
Zhang, Kaili ;
Zhang, Wenjun .
ADVANCED MATERIALS, 2018, 30 (09)
[58]   Engineering interfacial adhesion for high-performance lithium metal anode [J].
Xu, Bingqing ;
Liu, Zhe ;
Li, Jiangxu ;
Huang, Xin ;
Qie, Boyu ;
Gong, Tianyao ;
Tan, Laiyuan ;
Yang, Xiujia ;
Paley, Daniel ;
Dontigny, Martin ;
Zaghib, Karim ;
Liao, Xiangbiao ;
Cheng, Qian ;
Zhai, Haowei ;
Chen, Xi ;
Chen, Long-Qing ;
Nan, Ce-Wen ;
Lin, Yuan-Hua ;
Yang, Yuan .
NANO ENERGY, 2020, 67
[59]   Lithium metal anodes for rechargeable batteries [J].
Xu, Wu ;
Wang, Jiulin ;
Ding, Fei ;
Chen, Xilin ;
Nasybutin, Eduard ;
Zhang, Yaohui ;
Zhang, Ji-Guang .
ENERGY & ENVIRONMENTAL SCIENCE, 2014, 7 (02) :513-537
[60]   Interlayered Dendrite-Free Lithium Plating for High-Performance Lithium-Metal Batteries [J].
Xu, Ying ;
Li, Tao ;
Wang, Liping ;
Kang, Yijin .
ADVANCED MATERIALS, 2019, 31 (29)