Critical degenerate inequalities on the Heisenberg group

被引:35
作者
D'Ambrosio, L
机构
[1] SISSA, ISAS, I-34014 Trieste, Italy
[2] Dipartimento Interuniv Matemat, I-70125 Bari, Italy
关键词
D O I
10.1007/s229-001-8031-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The purpose of this paper is to present a necessary condition for the existence of a weak solutions of the following degenerate inequalities on the Heisenberg group: -\xi\(2)(H)psiDelta(H)(au) greater than or equal to \u\(q) on H-n\{0}, u(t) - \xi\(2)(H)psiDelta(H)(au) greater than or equal to \u\(q) on H-n\{0}x]0,+infinity[ u(tt) - \xi\(2)(H)psiDelta(H)(au) greater than or equal to \u\(q) on H-n\{0}x]0,+infinity[, where a is a bounded measurable function.
引用
收藏
页码:519 / 536
页数:18
相关论文
共 8 条
[1]   Liouville theorems for semilinear equations on the Heisenberg group [J].
Birindelli, I ;
Dolcetta, IC ;
Cutri, A .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1997, 14 (03) :295-308
[2]  
Brezis H, 1998, B UNIONE MAT ITAL, V1B, P223
[3]   ESTIMATES FOR DELTA-BAR B COMPLEX AND ANALYSIS ON HEISENBERG GROUP [J].
FOLLAND, GB ;
STEIN, EM .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1974, 27 (04) :429-522
[4]   EXISTENCE AND NONEXISTENCE RESULTS FOR SEMILINEAR EQUATIONS ON THE HEISENBERG-GROUP [J].
GAROFALO, N ;
LANCONELLI, E .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1992, 41 (01) :71-98
[5]  
Mitidieri E., 2001, P STEKLOV I MATH, V232, P240
[6]  
Mitidieri E., 2001, Tr. Mat. Inst. Steklova, V234, P1
[7]  
Mitidieri E., 2001, J EVOL EQU, V1, P189, DOI DOI 10.1007/PL00001368
[8]   Nonexistence results of solutions of semilinear differential inequalities on the Heisenberg group [J].
Pohozaev, S ;
Véron, L .
MANUSCRIPTA MATHEMATICA, 2000, 102 (01) :85-99