A robust classifier of high predictive value to identify good prognosis patients in ER-negative breast cancer

被引:73
作者
Teschendorff, Andrew E. [1 ,2 ]
Caldas, Carlos [1 ,3 ]
机构
[1] Canc Res UK Cambridge Res Inst, Breast Canc Funct Genom Lab, Cambridge CB2 0RE, England
[2] Univ Cambridge, Dept Oncol, Li Ka Shing Ctr, Cambridge CB2 0RE, England
[3] Cambridge Univ Hosp NHS Fdn Trust, Addenbrookes Hosp, Cambridge Breast Unit, Cambridge, England
来源
BREAST CANCER RESEARCH | 2008年 / 10卷 / 04期
关键词
D O I
10.1186/bcr2138
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Introduction Patients with primary operable oestrogen receptor (ER) negative (-) breast cancer account for about 30% of all cases and generally have a worse prognosis than ER-positive (+) patients. Nevertheless, a significant proportion of ER- cases have favourable outcomes and could potentially benefit from a less aggressive course of therapy. However, identification of such patients with a good prognosis remains difficult and at present is only possible through examining histopathological factors. Methods Building on a previously identified seven-gene prognostic immune response module for ER- breast cancer, we developed a novel statistical tool based on Mixture Discriminant Analysis in order to build a classifier that could accurately identify ER- patients with a good prognosis. Results We report the construction of a seven-gene expression classifier that accurately predicts, across a training cohort of 183 ER- tumours and six independent test cohorts (a total of 469 ER- tumours), ER- patients of good prognosis (in test sets, average predictive value = 94% [range 85 to 100%], average hazard ratio = 0.15 [range 0.07 to 0.36] p < 0.000001) independently of lymph node status and treatment. Conclusions This seven-gene classifier could be used in a polymerase chain reaction-based clinical assay to identify ER- patients with a good prognosis, who may therefore benefit from less aggressive treatment regimens.
引用
收藏
页数:11
相关论文
共 28 条
[1]   High expression of lymphocyte-associated genes in node-negative HER2+ breast cancers correlates with lower recurrence rates [J].
Alexe, Gabricla ;
Dalgin, Gul S. ;
Scanfeld, Daniel ;
Tamayo, Pablo ;
Mesirov, Jill P. ;
DeLisi, Charles ;
Harris, Lyndsay ;
Barnard, Nicola ;
Martel, Maritza ;
Levine, Arnold J. ;
Ganesan, Shridar ;
Bhanot, Gyan .
CANCER RESEARCH, 2007, 67 (22) :10669-10676
[2]   Gene expression profiling shows medullary breast cancer is a subgroup of basal breast cancers [J].
Bertucci, Francois ;
Finetti, Pascal ;
Cervera, Nathalie ;
Charafe-Jauffret, Emmanuelle ;
Mamessier, Emilie ;
Adelaide, Jose ;
Debono, Stephane ;
Houvenaeghel, Gilles ;
Maraninchi, Dominique ;
Viens, Patrice ;
Charpin, Colette ;
Jacquemier, Jocelyne ;
Birnbaum, Daniel .
CANCER RESEARCH, 2006, 66 (09) :4636-4644
[3]  
CALABRO A, 2008, BREAST CANC IN PRESS
[4]   Genomic and transcriptional aberrations linked to breast cancer pathophysiologies [J].
Chin, Koei ;
DeVries, Sandy ;
Fridlyand, Jane ;
Spellman, Paul T. ;
Roydasgupta, Ritu ;
Kuo, Wen-Lin ;
Lapuk, Anna ;
Neve, Richard M. ;
Qian, Zuwei ;
Ryder, Tom ;
Chen, Fanqing ;
Feiler, Heidi ;
Tokuyasu, Taku ;
Kingsley, Chris ;
Dairkee, Shanaz ;
Meng, Zhenhang ;
Chew, Karen ;
Pinkel, Daniel ;
Jain, Ajay ;
Ljung, Britt Marie ;
Esserman, Laura ;
Albertson, Donna G. ;
Waldman, Frederic M. ;
Gray, Joe W. .
CANCER CELL, 2006, 10 (06) :529-541
[5]   Biological processes associated with breast cancer clinical outcome depend on the molecular subtypes [J].
Desmedt, Christine ;
Haibe-Kains, Benjamin ;
Wirapati, Pratyaksha ;
Buyse, Marc ;
Larsimont, Denis ;
Bontempi, Gianluca ;
Delorenzi, Mauro ;
Piccart, Martine ;
Sotiriou, Christos .
CLINICAL CANCER RESEARCH, 2008, 14 (16) :5158-5165
[6]   Good Old clinical markers have similar power in breast cancer prognosis as microarray gene expression profilers [J].
Edén, P ;
Ritz, C ;
Rose, C ;
Fernö, M ;
Peterson, C .
EUROPEAN JOURNAL OF CANCER, 2004, 40 (12) :1837-1841
[7]   Model-based clustering, discriminant analysis, and density estimation [J].
Fraley, C ;
Raftery, AE .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2002, 97 (458) :611-631
[8]  
HASTIE T, 2001, ELEMENTS STAT LEARNI, pCH4
[9]   Time-dependent ROC curves for censored survival data and a diagnostic marker [J].
Heagerty, PJ ;
Lumley, T ;
Pepe, MS .
BIOMETRICS, 2000, 56 (02) :337-344
[10]   EGFR associated expression profiles vary with breast tumor subtype [J].
Hoadley, Katherine A. ;
Weigman, Victor J. ;
Fan, Cheng ;
Sawyer, Lynda R. ;
He, Xiaping ;
Troester, Melissa A. ;
Sartor, Carolyn I. ;
Rieger-House, Thais ;
Bernard, Philip S. ;
Carey, Lisa A. ;
Perou, Charles M. .
BMC GENOMICS, 2007, 8 (1)