OPTIMAL SOBOLEV REGULARITY FOR LINEAR SECOND-ORDER DIVERGENCE ELLIPTIC OPERATORS OCCURRING IN REAL-WORLD PROBLEMS

被引:28
作者
Disser, Karoline [1 ]
Kaiser, Hans-Christoph [1 ]
Rehberg, Joachim [1 ]
机构
[1] Weierstrass Inst, D-10117 Berlin, Germany
基金
欧洲研究理事会;
关键词
second-order divergence operators; elliptic regularity; mixed boundary conditions; discontinuous coefficients; BOUNDARY-VALUE-PROBLEMS; TRANSMISSION PROBLEMS; EQUATIONS; INTERFACE; UNIQUENESS; SYSTEMS; NEUMANN; SMOOTHNESS; EXISTENCE; SPACES;
D O I
10.1137/140982969
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
On bounded domains Omega subset of R-3, we consider divergence-type operators -del center dot mu del, including mixed homogeneous Dirichlet and Neumann boundary conditions on partial derivative Omega \ Gamma and Gamma subset of partial derivative Omega, respectively, and discontinuous coefficient functions mu. We develop a general geometric framework for Omega, Gamma, and mu in which it is possible to prove that -del center dot mu del + 1 provides an isomorphism from W-Gamma(1,q) (Omega) to W-Gamma(-1,q) (Omega) for some q > 3. We indicate relevant examples from real-world applications.
引用
收藏
页码:1719 / 1746
页数:28
相关论文
共 86 条
[1]   ESTIMATES NEAR THE BOUNDARY FOR SOLUTIONS OF ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS SATISFYING GENERAL BOUNDARY CONDITIONS .1. [J].
AGMON, S ;
DOUGLIS, A ;
NIRENBERG, L .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1959, 12 (04) :623-727
[2]   Function spaces on singular manifolds [J].
Amann, H. .
MATHEMATISCHE NACHRICHTEN, 2013, 286 (5-6) :436-475
[3]  
Amann H., 2009, J NECAS CENT MATH MO, V6
[4]  
[Anonymous], 1978, INTERPOLATION THEORY
[5]  
[Anonymous], 1987, Partial differential equations
[6]  
[Anonymous], 1966, GRUNDLEHREN MATH WIS
[7]  
[Anonymous], 1998, ASTERISQUE
[8]  
[Anonymous], 1977, Grad. Texts Math.
[9]  
[Anonymous], 1985, Springer Series in Soviet Mathematics, DOI DOI 10.1007/978-3-662-09922-3
[10]   THE THERMISTOR PROBLEM - EXISTENCE, SMOOTHNESS, UNIQUENESS, BLOWUP [J].
ANTONTSEV, SN ;
CHIPOT, M .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1994, 25 (04) :1128-1156