An application of L1 estimates for oscillating integrals to parabolic like semi-linear structurally damped σ-evolution models

被引:26
作者
Tuan Anh Dao [1 ,2 ]
Reissig, Michael [2 ]
机构
[1] Hanoi Univ Sci & Technol, Sch Appl Math & Informat, 1 Dai Co Viet Rd, Hanoi, Vietnam
[2] TU Bergakad Freiberg, Fac Math & Comp Sci, Pruferstr 9, D-09596 Freiberg, Germany
关键词
Structurally damped sigma-evolution equations; Oscillating integrals; Global existence; Loss of decay; Loss of regularity; Gevrey smoothing;
D O I
10.1016/j.jmaa.2019.03.048
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the following Cauchy problems for semi-linear structurally damped sigma-evolution models: u(tt) (-Delta)(sigma)u + mu(-Delta)(delta)u(t) = f (u, u(t)), u(0, x) = u(0)(x), u(t)(0 x) = u(1)(x) with sigma >= 1, mu > 0 and delta is an element of (0, sigma/2). Here the function f(u,u(t)) stands for the power nonlinearities vertical bar u vertical bar(p) and vertical bar u(t)vertical bar(p) with a given number p > 1. We are interested in investigating L-1 estimates for oscillating integrals in the presentation of the solutions to the corresponding linear models with vanishing right-hand sides by applying the theory of modified Bessel functions and Faa di Bruno's formula. By assuming additional L-m regularity on the initial data, we use (L-m boolean AND L-q) - L-q and L-q - L-q estimates with q is an element of (1, infinity)) and m is an element of [1, q), to prove the global (in time) existence of small data Sobolev solutions to the above semi-linear models from suitable function spaces basing on L-q spaces. (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页码:426 / 463
页数:38
相关论文
共 17 条
[1]  
[Anonymous], 1857, The Quarterly Journal of Pure and Applied Mathematics
[2]  
[Anonymous], 2004, Classical and modern Fourier analysis
[3]  
Chen H., 1996, Pitman Res. Notes Math. Ser., Longman, V349, P6
[4]   Loss of regularity for p-evolution type models [J].
Cicognani, Massimo ;
Hirosawa, Fumihiko ;
Reissigc, Michael .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 347 (01) :35-58
[5]   A new phenomenon in the critical exponent for structurally damped semi-linear evolution equations [J].
D'Abbicco, M. ;
Ebert, M. R. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2017, 149 :1-40
[6]   An application of Lp - Lq decay estimates to the semi-linear wave equation with parabolic-like structural damping [J].
D'Abbicco, M. ;
Ebert, M. R. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2014, 99 :16-34
[7]   Semilinear structural damped waves [J].
D'Abbicco, M. ;
Reissig, M. .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2014, 37 (11) :1570-1592
[8]   Global existence for semi-linear structurally damped σ-evolution models [J].
Duong Trieu Pham ;
Mezadek, Mohamed Kainane ;
Reissig, Michael .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2015, 431 (01) :569-596
[9]  
Ebert M R., 2018, Methods for partial differential equations
[10]  
Hajaiej H., 2011, RIMS KOKYUROKU BES B, VB26, P159