A review for optical sensors based on photonic crystal cavities

被引:167
作者
Zhang, Ya-nan [1 ]
Zhao, Yong [1 ,2 ]
Lv, Ri-qing [1 ]
机构
[1] Northeastern Univ, Coll Informat Sci & Engn, Shenyang 110819, Peoples R China
[2] State Key Lab Synthet Automat Proc Ind, Shenyang 110819, Peoples R China
基金
中国国家自然科学基金; 美国国家科学基金会;
关键词
Photonic crystal cavity (PCC); Optical sensor; High sensitivity; Miniature sensor; COUPLED RESONANT-CAVITY; REFRACTIVE-INDEX; HIGH-SENSITIVITY; WAVE-GUIDE; ELECTROOPTIC MODULATOR; MICROCAVITY SENSOR; STRESS SENSOR; DESIGN; FIBER; LIGHT;
D O I
10.1016/j.sna.2015.07.025
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This review covers photonic crystal cavities (PCCs) and their applications in optical sensors, with a particular focus on the structures of different PCCs. For each kind of optical sensor, the specific measurement principle, structure of PCC, and the corresponding sensing properties are all presented in detail. The summary of the reported works and the corresponding results demonstrate that it is possible to realize miniature and high-sensitive optical sensors due to the ultra-compact size, excellent resonant properties, and flexibility in structural design of PCCs. Finally, the key problems and new directions of PCCs for sensing applications are discussed. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:374 / 389
页数:16
相关论文
共 121 条
[1]   High-Q photonic nanocavity in a two-dimensional photonic crystal [J].
Akahane, Y ;
Asano, T ;
Song, BS ;
Noda, S .
NATURE, 2003, 425 (6961) :944-947
[2]   Guiding and confining light in void nanostructure [J].
Almeida, VR ;
Xu, QF ;
Barrios, CA ;
Lipson, M .
OPTICS LETTERS, 2004, 29 (11) :1209-1211
[3]  
Arjmand M, 2015, OPTOELECTRON ADV MAT, V9, P32
[4]   Analysis of the experimental Q factors (∼1 million) of photonic crystal nanocavities [J].
Asano, T ;
Song, BS ;
Noda, S .
OPTICS EXPRESS, 2006, 14 (05) :1996-2002
[5]   Design of an ultracompact low-power all-optical modulator by means of dispersion engineered slow light regime in a photonic crystal Mach-Zehnder interferometer [J].
Bakhshi, Sara ;
Moravvej-Farshi, Mohammad Kazem ;
Ebnali-Heidari, Majid .
APPLIED OPTICS, 2012, 51 (14) :2687-2692
[6]   Liquid crystal dynamics in a photonic crystal cavity created by selective microfluidic infiltration [J].
Bedoya, A. Casas ;
Mahmoodian, S. ;
Monat, C. ;
Tomljenovic-Hanic, S. ;
Grillet, C. ;
Domachuk, P. ;
Maegi, E. C. ;
Eggleton, B. J. ;
van der Heijden, R. W. .
OPTICS EXPRESS, 2010, 18 (26) :27280-27290
[7]   Accurate determination of the functional hole size in photonic crystal slabs using optical methods [J].
Beggs, Daryl M. ;
O'Faolain, Liam ;
Krauss, Thomas F. .
PHOTONICS AND NANOSTRUCTURES-FUNDAMENTALS AND APPLICATIONS, 2008, 6 (3-4) :213-218
[8]   A surface-plasmon-resonance sensor based on photonic-crystal-fiber with large size microfluidic channels [J].
Bing, Pibin ;
Yao, Jianquan ;
Lu, Ying ;
Li, Zhongyang .
OPTICA APPLICATA, 2012, 42 (03) :493-501
[9]   High-Q microfluidic cavities in silicon-based two-dimensional photonic crystal structures [J].
Bog, Uwe ;
Smith, Cameron L. C. ;
Lee, Michael W. ;
Tomljenovic-Hanic, Snjezana ;
Grillet, Christian ;
Monat, Christelle ;
O'Faolain, Liam ;
Karnutsch, Christian ;
Krauss, Thomas F. ;
McPhedran, Ross C. ;
Eggleton, Benjamin J. .
OPTICS LETTERS, 2008, 33 (19) :2206-2208
[10]   High-speed low-voltage electro-optic modulator with a polymer-infiltrated silicon photonic crystal waveguide [J].
Brosi, Jan-Michael ;
Koos, Christian ;
Andreani, Lucio Claudio ;
Waldow, Michael ;
Leuthold, Juerg ;
Freude, Wolfgang .
OPTICS EXPRESS, 2008, 16 (06) :4177-4191