Functionalized Graphene for High Performance Lithium Ion Capacitors

被引:119
作者
Lee, Ji Hoon [1 ]
Shin, Weon Ho [1 ]
Ryou, Myung-Hyun [1 ,2 ]
Jin, Jae Kyu [3 ]
Kim, Junhyung [3 ]
Choi, Jang Wook [1 ,4 ]
机构
[1] Korea Adv Inst Sci & Technol, Grad Sch EEWS WCU, Taejon 305701, South Korea
[2] Korea Basic Sci Inst, Div Mat Sci, Taejon 305806, South Korea
[3] SK Innovat, Mat R&D Ctr, Taejon 305712, South Korea
[4] Korea Adv Inst Sci & Technol, KAIST Inst Nano Century, Taejon 305701, South Korea
基金
新加坡国家研究基金会;
关键词
capacitors; energy conversion; graphene; lithium; urea reduction; ACTIVATED CARBON; ANODE MATERIALS; DOPED GRAPHENE; STORAGE; ENERGY; SUPERCAPACITOR; BATTERIES; HYBRID; ULTRACAPACITORS; CHALLENGES;
D O I
10.1002/cssc.201200549
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Lithium ion capacitors (LICs) have recently drawn considerable attention because they utilize the advantages of supercapacitors (high power) and lithium ion batteries (high energy). However, the energy densities of conventional LICs, which consist of a pair of graphite and activated carbon electrodes, are limited by the small capacities of the activated carbon cathodes. To overcome this limitation, we have engaged urea-reduced graphene oxide. The amide functional groups generated during the urea reduction facilitate the enolization processes for reversible Li binding, which improves the specific capacity by 37?% compared to those of conventional systems such as activated carbon and hydrazine-reduced graphene oxide. Utilizing the increased Li binding capability, when evaluated based on the mass of the active materials on both sides, the LICs based on urea-reduced graphene oxide deliver a specific energy density of approximately 106 Wh?kgtotal-1 and a specific power density of approximately 4200 W?kgtotal-1 with perfect capacity retention up to 1000 cycles. These values are far superior to those of previously reported LICs and supercapacitors, which suggests that appropriately treated graphene can be a promising electrode material for LICs.
引用
收藏
页码:2328 / 2333
页数:6
相关论文
共 54 条
[1]   An asymmetric hybrid nonaqueous energy storage cell [J].
Amatucci, GG ;
Badway, F ;
Du Pasquier, A ;
Zheng, T .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2001, 148 (08) :A930-A939
[2]   Tuning the Acid/Base Properties of Nanocarbons by Functionalization via Amination [J].
Arrigo, Rosa ;
Haevecker, Michael ;
Wrabetz, Sabine ;
Blume, Raoul ;
Lerch, Martin ;
McGregor, James ;
Parrott, Edward P. J. ;
Zeitler, J. Axel ;
Gladden, Lynn F. ;
Knop-Gericke, Axel ;
Schloegl, Robert ;
Su, Dang Sheng .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2010, 132 (28) :9616-9630
[3]   Li-insertion in hard carbon anode materials for Li-ion batteries. [J].
Buiel, E ;
Dahn, JR .
ELECTROCHIMICA ACTA, 1999, 45 (1-2) :121-130
[4]   Ultracapacitors: why, how, and where is the technology [J].
Burke, A .
JOURNAL OF POWER SOURCES, 2000, 91 (01) :37-50
[5]   Hybridization of electrochemical capacitors and rechargeable batteries: An experimental analysis of the different possible approaches utilizing activated carbon, Li4Ti5O12 and LiMn2O4 [J].
Cericola, Dario ;
Novak, Petr ;
Wokaun, Alexander ;
Koetz, Ruediger .
JOURNAL OF POWER SOURCES, 2011, 196 (23) :10305-10313
[6]   From biomass to a renewable LixC6O6 organic electrode for sustainable Li-ion batteries [J].
Chen, Haiyan ;
Armand, Michel ;
Demailly, Gilles ;
Dolhem, Franck ;
Poizot, Philippe ;
Tarascon, Jean-Marie .
CHEMSUSCHEM, 2008, 1 (04) :348-355
[7]   Design and Synthesis of Hierarchical Nanowire Composites for Electrochemical Energy Storage [J].
Chen, Zheng ;
Qin, Yaochun ;
Weng, Ding ;
Xiao, Qiangfeng ;
Peng, Yiting ;
Wang, Xiaolei ;
Li, Hexing ;
Wei, Fei ;
Lu, Yunfeng .
ADVANCED FUNCTIONAL MATERIALS, 2009, 19 (21) :3420-3426
[8]   3D Macroporous Graphene Frameworks for Supercapacitors with High Energy and Power Densities [J].
Choi, Bong Gill ;
Yang, MinHo ;
Hong, Won Hi ;
Choi, Jang Wook ;
Huh, Yun Suk .
ACS NANO, 2012, 6 (05) :4020-4028
[9]   A comparative study of Li-ion battery, supercapacitor and nonaqueous asymmetric hybrid devices for automotive applications [J].
Du Pasquier, A ;
Plitz, I ;
Menocal, S ;
Amatucci, G .
JOURNAL OF POWER SOURCES, 2003, 115 (01) :171-178
[10]   Recent development of carbon materials for Li ion batteries [J].
Endo, M ;
Kim, C ;
Nishimura, K ;
Fujino, T ;
Miyashita, K .
CARBON, 2000, 38 (02) :183-197