A TORELLI THEOREM FOR MODULI SPACES OF PRINCIPAL BUNDLES OVER A CURVE

被引:16
|
作者
Biswas, Indranil [1 ]
Hoffmann, Norbert [2 ]
机构
[1] Tata Inst Fundamental Res, Sch Math, Bombay 400005, Maharashtra, India
[2] Free Univ Berlin, Math Inst, D-14195 Berlin, Germany
关键词
Principal bundle; moduli space; Torelli theorem; VECTOR-BUNDLES; PICARD GROUP;
D O I
10.5802/aif.2700
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let X and X' be compact Riemann surfaces of genus >= 3, and let G and G' be nonabelian reductive complex groups. If one component M-G(d)(X) of the coarse moduli space for semistable principal G-bundles over X is isomorphic to another component M-G'(d')(X'), then X is isomorphic to X'.
引用
收藏
页码:87 / 106
页数:20
相关论文
共 50 条
  • [41] Moduli spaces of sheaves and principal G-bundles
    Langer, Adrian
    PROCEEDINGS OF SYMPOSIA IN PURE MATHEMATICS: ALGEBRAIC GEOMETRY SEATTLE 2005, VOL 80, PTS 1 AND 2, 2009, 80 : 273 - 308
  • [42] On the moduli spaces of singular principal bundles on stable curves
    Munoz Castaneda, Angel Luis
    ADVANCES IN GEOMETRY, 2020, 20 (04) : 573 - 584
  • [43] Universal families on moduli spaces of principal bundles on curves
    Balaji, V.
    Biswas, I.
    Nagaraj, D. S.
    Newstead, P. E.
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2006, 2006 : 1 - 16
  • [44] Quantized moduli spaces of the bundles on the elliptic curve and their applications
    Feigin, BL
    Odesskii, AV
    INTEGRABLE STRUCTURES OF EXACTLY SOLVABLE TWO-DIMENSIONAL MODELS OF QUANTUM FIELD THEORY, 2001, 35 : 123 - 137
  • [45] Moduli spaces of vector bundles on a real nodal curve
    Usha N. Bhosle
    Beiträge zur Algebra und Geometrie / Contributions to Algebra and Geometry, 2020, 61 : 615 - 626
  • [46] The Hodge–Poincaré polynomial of the moduli spaces of stable vector bundles over an algebraic curve
    Cristian González–Martínez
    Manuscripta Mathematica, 2012, 137 : 19 - 55
  • [47] Moduli spaces of vector bundles on a real nodal curve
    Bhosle, Usha N.
    BEITRAGE ZUR ALGEBRA UND GEOMETRIE-CONTRIBUTIONS TO ALGEBRA AND GEOMETRY, 2020, 61 (04): : 615 - 626
  • [48] ON PRINCIPAL BUNDLES OVER CARTAN SPACES
    GILLIGAN, B
    REVUE ROUMAINE DE MATHEMATIQUES PURES ET APPLIQUEES, 1984, 29 (04): : 309 - 311
  • [49] Moduli for principal bundles over algebraic curves: I
    Proc Indian Acad Sci Math Sci, 3 (301):
  • [50] Motives of moduli spaces of rank 3 vector bundles and Higgs bundles on a curve
    Fu, Lie
    Hoskins, Victoria
    Lehalleur, Simon Pepin
    ELECTRONIC RESEARCH ARCHIVE, 2022, 30 (01): : 66 - 89