Phylogenetic modeling of heterogeneous gene-expression microarray data from cancerous specimens

被引:10
作者
Abu-Asab, Mones S. [2 ]
Chaouchi, Mohamed [1 ]
Amri, Hakima [1 ]
机构
[1] Georgetown Univ, Sch Med, Dept Physiol & Biophys, Washington, DC 20007 USA
[2] NCI, Pathol Lab, NIH, Bethesda, MD 20892 USA
关键词
D O I
10.1089/omi.2008.0010
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
The qualitative dimension of gene expression data and its heterogeneous nature in cancerous specimens can be accounted for by phylogenetic modeling that incorporates the directionality of altered gene expressions, complex patterns of expressions among a group of specimens, and data-based rather than specimen-based gene linkage. Our phylogenetic modeling approach is a double algorithmic technique that includes polarity assessment that brings out the qualitative value of the data, followed by maximum parsimony analysis that is most suitable for the data heterogeneity of cancer gene expression. We demonstrate that polarity assessment of expression values into derived and ancestral states, via outgroup comparison, reduces experimental noise; reveals dichotomously expressed asynchronous genes; and allows data pooling as well as comparability of intra- and interplatforms. Parsimony phylogenetic analysis of the polarized values produces a multidimensional classification of specimens into clades that reveal shared derived gene expressions (the synapomorphies); provides better assessment of ontogenic pathways and phyletic relatedness of specimens; efficiently utilizes dichotomously expressed genes; produces highly predictive class recognition; illustrates gene linkage and multiple developmental pathways; provides higher concordance between gene lists; and projects the direction of change among specimens. Further implication of this phylogenetic approach is that it may transform microarray into diagnostic, prognostic, and predictive tool.
引用
收藏
页码:183 / 199
页数:17
相关论文
共 50 条
[41]   Genetic algorithm based cancerous gene identification from microarray data using ensemble of filter methods [J].
Ghosh, Manosij ;
Adhikary, Sukdev ;
Ghosh, Kushal Kanti ;
Sardar, Aritra ;
Begum, Shemim ;
Sarkar, Ram .
MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING, 2019, 57 (01) :159-176
[42]   Genetic algorithm based cancerous gene identification from microarray data using ensemble of filter methods [J].
Manosij Ghosh ;
Sukdev Adhikary ;
Kushal Kanti Ghosh ;
Aritra Sardar ;
Shemim Begum ;
Ram Sarkar .
Medical & Biological Engineering & Computing, 2019, 57 :159-176
[43]   Microarray data analysis: From hypotheses to conclusions using gene expression data [J].
Armstrong, NJ ;
van de Wiel, MA .
CELLULAR ONCOLOGY, 2004, 26 (5-6) :279-290
[44]   Gene-expression profile of colorectal adenocarcinoma tissue identified by gene microarray analysis [J].
Franceschi, F ;
Fini, L ;
Manno, A ;
Carloni, E ;
Zocco, MA ;
di Caro, N ;
Leo, D ;
Santoro, MC ;
Nista, EC ;
Cazzato, IA ;
Silveri, NG ;
Picciocchi, A ;
Coco, C ;
Gasbarrini, G ;
Gasbarrini, A .
GASTROENTEROLOGY, 2004, 126 (04) :A244-A245
[45]   GENE-EXPRESSION PROFILE OF COLORECTAL ADENOCARCINOMA TISSUES IDENTIFIED BY GENE MICROARRAY ANALYSIS [J].
Fini, L. ;
Franceschi, F. ;
Manno, A. ;
Carloni, E. ;
Zocco, M. A. ;
Di Caro, S. ;
Picciocchi, A. ;
Coco, C. ;
Gasbarrini, G. ;
Gasbarrini, A. .
ANNALS OF ONCOLOGY, 2004, 15 :48-48
[46]   Making sense of gene-expression data [J].
Somogyi, R .
TRENDS IN BIOTECHNOLOGY, 1999, :17-24
[47]   Improving Gene-Expression Data Analysis [J].
Hapert, Richard L. ;
Laurance, Megan E. .
GENETIC ENGINEERING & BIOTECHNOLOGY NEWS, 2012, 32 (05) :38-39
[48]   Evolving clusters in gene-expression data [J].
Hruschka, Eduardo R. ;
Campello, Ricardo J. G. B. ;
de Castro, Leandro N. .
INFORMATION SCIENCES, 2006, 176 (13) :1898-1927
[49]   Gene-expression measurement: variance-modeling considerations for robust data analysis [J].
Shankar Subramaniam ;
Gene Hsiao .
Nature Immunology, 2012, 13 :199-203
[50]   Gene-expression measurement: variance-modeling considerations for robust data analysis [J].
Subramaniam, Shankar ;
Hsiao, Gene .
NATURE IMMUNOLOGY, 2012, 13 (03) :199-203