Phylogenetic modeling of heterogeneous gene-expression microarray data from cancerous specimens

被引:10
作者
Abu-Asab, Mones S. [2 ]
Chaouchi, Mohamed [1 ]
Amri, Hakima [1 ]
机构
[1] Georgetown Univ, Sch Med, Dept Physiol & Biophys, Washington, DC 20007 USA
[2] NCI, Pathol Lab, NIH, Bethesda, MD 20892 USA
关键词
D O I
10.1089/omi.2008.0010
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
The qualitative dimension of gene expression data and its heterogeneous nature in cancerous specimens can be accounted for by phylogenetic modeling that incorporates the directionality of altered gene expressions, complex patterns of expressions among a group of specimens, and data-based rather than specimen-based gene linkage. Our phylogenetic modeling approach is a double algorithmic technique that includes polarity assessment that brings out the qualitative value of the data, followed by maximum parsimony analysis that is most suitable for the data heterogeneity of cancer gene expression. We demonstrate that polarity assessment of expression values into derived and ancestral states, via outgroup comparison, reduces experimental noise; reveals dichotomously expressed asynchronous genes; and allows data pooling as well as comparability of intra- and interplatforms. Parsimony phylogenetic analysis of the polarized values produces a multidimensional classification of specimens into clades that reveal shared derived gene expressions (the synapomorphies); provides better assessment of ontogenic pathways and phyletic relatedness of specimens; efficiently utilizes dichotomously expressed genes; produces highly predictive class recognition; illustrates gene linkage and multiple developmental pathways; provides higher concordance between gene lists; and projects the direction of change among specimens. Further implication of this phylogenetic approach is that it may transform microarray into diagnostic, prognostic, and predictive tool.
引用
收藏
页码:183 / 199
页数:17
相关论文
共 50 条
[31]   Microarray gene expression data analysis [J].
Vachtsevanos, G ;
Ding, YH ;
Fairley, JA ;
Gardner, AB ;
Simeonova, P .
2004 2ND IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING: MACRO TO NANO, VOLS 1 AND 2, 2004, :105-108
[32]   Data mining for gene expression profiles from DNA, microarray [J].
Cho, SB ;
Won, HH .
INTERNATIONAL JOURNAL OF SOFTWARE ENGINEERING AND KNOWLEDGE ENGINEERING, 2003, 13 (06) :593-608
[33]   Kernel hierarchical gene clustering from microarray expression data [J].
Qin, J ;
Lewis, DP ;
Noble, WS .
BIOINFORMATICS, 2003, 19 (16) :2097-2104
[34]   Clustering gene expression signals from retinal microarray data [J].
Fleury, G ;
Hero, A ;
Yoshida, S ;
Carter, T ;
Barlow, C ;
Swaroop, A .
2002 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOLS I-IV, PROCEEDINGS, 2002, :4024-4027
[35]   Mixture modelling of gene expression data from microarray experiments [J].
Ghosh, D ;
Chinnaiyan, AM .
BIOINFORMATICS, 2002, 18 (02) :275-286
[36]   Are data from different gene expression microarray platforms comparable? [J].
Järvinen, AK ;
Hautaniemi, S ;
Edgren, H ;
Auvinen, P ;
Saarela, J ;
Kallioniemi, OP ;
Monni, O .
GENOMICS, 2004, 83 (06) :1164-1168
[37]   Heterogeneous Patterns of Gene-Expression Diversification in Mammalian Gene Duplicates [J].
Farre, Domenec ;
Mar Alba, M. .
MOLECULAR BIOLOGY AND EVOLUTION, 2010, 27 (02) :325-335
[38]   Analysis of gene-expression profiles by oligonucleotide microarray in children with influenza [J].
Kawada, Jun-ichi ;
Kimura, Hiroshi ;
Kamachi, Yoshiro ;
Nishikawa, Kazuo ;
Taniguchi, Mariko ;
Nagaoka, Kayuri ;
Kurahashi, Hiroki ;
Kojima, Seiji ;
Morishima, Tsuneo .
JOURNAL OF GENERAL VIROLOGY, 2006, 87 :1677-1683
[39]   Gene-expression profilin of human mononuclear cells from Welders using cDNA microarray [J].
Rim, Kyung Taek ;
Park, Kun Koo ;
Kim, Yang Ho ;
Lee, Yong Hwan ;
Han, Jeong Hee ;
Chung, Yong Hyun ;
Yu, Il Je .
JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH-PART A-CURRENT ISSUES, 2007, 70 (15-16) :1264-1277
[40]   Gene ontology driven feature selection from microarray gene expression data [J].
Qi, Jianlong ;
Tang, Jian .
PROCEEDINGS OF THE 2006 IEEE SYMPOSIUM ON COMPUTATIONAL INTELLIGENCE IN BIOINFORMATICS AND COMPUTATIONAL BIOLOGY, 2006, :428-+