Phylogenetic modeling of heterogeneous gene-expression microarray data from cancerous specimens

被引:10
作者
Abu-Asab, Mones S. [2 ]
Chaouchi, Mohamed [1 ]
Amri, Hakima [1 ]
机构
[1] Georgetown Univ, Sch Med, Dept Physiol & Biophys, Washington, DC 20007 USA
[2] NCI, Pathol Lab, NIH, Bethesda, MD 20892 USA
关键词
D O I
10.1089/omi.2008.0010
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
The qualitative dimension of gene expression data and its heterogeneous nature in cancerous specimens can be accounted for by phylogenetic modeling that incorporates the directionality of altered gene expressions, complex patterns of expressions among a group of specimens, and data-based rather than specimen-based gene linkage. Our phylogenetic modeling approach is a double algorithmic technique that includes polarity assessment that brings out the qualitative value of the data, followed by maximum parsimony analysis that is most suitable for the data heterogeneity of cancer gene expression. We demonstrate that polarity assessment of expression values into derived and ancestral states, via outgroup comparison, reduces experimental noise; reveals dichotomously expressed asynchronous genes; and allows data pooling as well as comparability of intra- and interplatforms. Parsimony phylogenetic analysis of the polarized values produces a multidimensional classification of specimens into clades that reveal shared derived gene expressions (the synapomorphies); provides better assessment of ontogenic pathways and phyletic relatedness of specimens; efficiently utilizes dichotomously expressed genes; produces highly predictive class recognition; illustrates gene linkage and multiple developmental pathways; provides higher concordance between gene lists; and projects the direction of change among specimens. Further implication of this phylogenetic approach is that it may transform microarray into diagnostic, prognostic, and predictive tool.
引用
收藏
页码:183 / 199
页数:17
相关论文
共 50 条
[21]   Exploiting Gene-Expression Data [J].
Liszewski, Kathy .
GENETIC ENGINEERING & BIOTECHNOLOGY NEWS, 2012, 32 (07) :1-+
[22]   Inferring cancer metabolism from gene-expression data [J].
Mohanty, Vakul .
NATURE REVIEWS CANCER, 2024, 24 (04) :230-230
[23]   Inferring cancer metabolism from gene-expression data [J].
Vakul Mohanty .
Nature Reviews Cancer, 2024, 24 :230-230
[24]   CHOLECYSTOKININ GENE-EXPRESSION IN HUMAN DUODENAL BIOPSY SPECIMENS [J].
BENTOUIMOU, N ;
LERAY, V ;
DESVARANNES, SB ;
ZERBIB, F ;
GALMICHE, JP .
GASTROENTEROLOGY, 1995, 108 (04) :A58-A58
[25]   CHOLECYSTOKININ GENE-EXPRESSION IN HUMAN DUODENAL BIOPSY SPECIMENS [J].
BENTOUIMOU, N ;
LERAY, V ;
ZERBIB, F ;
BLOTTIERE, HM ;
GALMICHE, JP ;
DESVARANNES, SB .
GASTROENTEROLOGIE CLINIQUE ET BIOLOGIQUE, 1995, 19 (8-9) :659-663
[26]   A PHYLOGENETIC INTERPRETATION OF THE PATTERNS OF GENE-EXPRESSION IN DROSOPHILA EMBRYOS [J].
TEAR, G ;
BATE, CM ;
ARIAS, AM .
DEVELOPMENT, 1988, 104 :135-145
[27]   Phylogenetic modeling of endometriosis gene expression [J].
Carney, Elissa Justine ;
Amri, Hakima .
FASEB JOURNAL, 2009, 23
[28]   Analysis of microarray gene expression data [J].
Pham, Tuan D. ;
Wells, Christine ;
Crane, Denis I. .
CURRENT BIOINFORMATICS, 2006, 1 (01) :37-53
[29]   Visualization of microarray gene expression data [J].
Prasad, Tangirala Venkateswara ;
Ahson, Syed Ismail .
BIOINFORMATION, 2006, 1 (04) :141-145
[30]   Microarray gene expression data analysis [J].
Vachtsevanos, G ;
Ding, YH ;
Fairley, JA ;
Gardner, AB ;
Simeonova, P .
2004 2ND IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING: MACRO TO NANO, VOLS 1 AND 2, 2004, :105-108