Phylogenetic modeling of heterogeneous gene-expression microarray data from cancerous specimens

被引:10
|
作者
Abu-Asab, Mones S. [2 ]
Chaouchi, Mohamed [1 ]
Amri, Hakima [1 ]
机构
[1] Georgetown Univ, Sch Med, Dept Physiol & Biophys, Washington, DC 20007 USA
[2] NCI, Pathol Lab, NIH, Bethesda, MD 20892 USA
关键词
D O I
10.1089/omi.2008.0010
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
The qualitative dimension of gene expression data and its heterogeneous nature in cancerous specimens can be accounted for by phylogenetic modeling that incorporates the directionality of altered gene expressions, complex patterns of expressions among a group of specimens, and data-based rather than specimen-based gene linkage. Our phylogenetic modeling approach is a double algorithmic technique that includes polarity assessment that brings out the qualitative value of the data, followed by maximum parsimony analysis that is most suitable for the data heterogeneity of cancer gene expression. We demonstrate that polarity assessment of expression values into derived and ancestral states, via outgroup comparison, reduces experimental noise; reveals dichotomously expressed asynchronous genes; and allows data pooling as well as comparability of intra- and interplatforms. Parsimony phylogenetic analysis of the polarized values produces a multidimensional classification of specimens into clades that reveal shared derived gene expressions (the synapomorphies); provides better assessment of ontogenic pathways and phyletic relatedness of specimens; efficiently utilizes dichotomously expressed genes; produces highly predictive class recognition; illustrates gene linkage and multiple developmental pathways; provides higher concordance between gene lists; and projects the direction of change among specimens. Further implication of this phylogenetic approach is that it may transform microarray into diagnostic, prognostic, and predictive tool.
引用
收藏
页码:183 / 199
页数:17
相关论文
共 50 条
  • [1] Local Modeling Classifier for Microarray Gene-Expression Data
    Porto-Diaz, Iago
    Bolon-Canedo, Veronica
    Alonso-Betanzos, Amparo
    Fontenla-Romero, Oscar
    ARTIFICIAL NEURAL NETWORKS (ICANN 2010), PT III, 2010, 6354 : 11 - 20
  • [2] On the classification of microarray gene-expression data
    Basford, Kaye E.
    McLachlan, Geoffrey J.
    Rathnayake, Suren I.
    BRIEFINGS IN BIOINFORMATICS, 2013, 14 (04) : 402 - 410
  • [3] Learning Bayesian classiriers from gene-expression microarray data
    Bosin, A
    Dessì, N
    Liberati, D
    Pes, B
    FUZZY LOGIC AND APPLICATIONS, 2006, 3849 : 297 - 304
  • [4] Key aspects of analyzing microarray gene-expression data
    Chen, James J.
    PHARMACOGENOMICS, 2007, 8 (05) : 473 - 482
  • [5] Selection bias in gene extraction on the basis of microarray gene-expression data
    Ambroise, C
    McLachlan, GJ
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (10) : 6562 - 6566
  • [6] Ontologizing gene-expression microarray data:: characterizing clusters with Gene Ontology
    Robinson, PN
    Wollstein, A
    Böhme, U
    Beattie, B
    BIOINFORMATICS, 2004, 20 (06) : 979 - 981
  • [7] Mixture modeling of microarray gene expression data
    Yang Yang
    Adam P Tashman
    Jung Yeon Lee
    Seungtai Yoon
    Wenyang Mao
    Kwangmi Ahn
    Wonkuk Kim
    Nancy R Mendell
    Derek Gordon
    Stephen J Finch
    BMC Proceedings, 1 (Suppl 1)
  • [8] An Approach Towards Most Cancerous Gene Selection from Microarray Data
    Das, Sunanda
    Das, Asit Kumar
    COMPUTATIONAL INTELLIGENCE IN DATA MINING, VOL 3, 2015, 33
  • [9] Modeling gene expression from microarray expression data with state-space equations
    Wu, FX
    Zhang, WJ
    Kusalik, AJ
    PACIFIC SYMPOSIUM ON BIOCOMPUTING 2004, 2003, : 581 - 592
  • [10] MAPPFinder: using Gene Ontology and GenMAPP to create a global gene-expression profile from microarray data
    Scott W Doniger
    Nathan Salomonis
    Kam D Dahlquist
    Karen Vranizan
    Steven C Lawlor
    Bruce R Conklin
    Genome Biology, 4